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Abstract- A huge source of energy lies within
the incident solar heat and light from the sun,
especially for colder territories found in the
Nordics such as Finland. For a country situated
with close proximity to the North pole, Finland
suffers from chilling conditions most of the year
in addition to the withheld Sun light. Except
during the very short seasons of spring and
summer when the Sun remains in the sky for
almost 22 hours per day on average. Thus, solar
heat flux and solar irradiation become essential
energy sources between April and September
annually. However, solar irradiance is a
physical quantity that is highly affected by
probabilistic uncertainty found in many
weather conditions, solar behavior throughout
the year, time of the day, and the geographical
location. In this article, we propose a solar
irradiance estimation method base on the
Extended Kalman algorithms. The experiment
was carried out between the years 2014-2016 in
which we installed solar radiation sensors
underground and on a rooftop inside the
campus of Vaasa University. The readings were
collected via an embedded system specifically
designed for the endeavors of this experiment.
The results showed that the algorithm was able
to predict the incident solar irradiance on the
city of Vaasa (Finland) with an acceptable
accuracy range.

Keywords— solar irradiance, extended Kalman filter,
probability and stochastics
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I.  INTRODUCTION

The sun provides our planet with renewable sources of
energy, not only found in light energy but also in heat
energy. The earth is being showered by massive bursts of
energy coming from the sun every moment throughout the
day. It is estimated that most of the utilized energy from the
sun is light-based while the most wasted energy is the
renewable heat and warmth incident from our star.

Solar irradiance, also known as “solar insolation”, it is
the quantity of sunlight power received from the sun per unit
area on earth’s surface, measured in watt per meter square
[W/m2]. Nearly 30% of the incident light power received on
earth’s surface is attenuated by earth’s atmosphere i.e. the
solar irradiance outside the atmosphere (extra-terrestrial) is
always greater than the solar irradiance on earth’s surface
(terrestrial) [1]. Moreover, knowing the quantity of incident
solar irradiance is very beneficial for some photovoltaic
scheduling applications [2].

The amount of incident solar irradiance depends on
numerous factors and parameters. This physical quantity is
highly sensitive to the weather conditions, time of the year
and time of the day, the geographical location where it is
been measured, and the sensitivity of the measuring
equipment. Therefore, the nature of solar irradiance is found
to be nonlinear stochastic process that contains higher
degrees of uncertainty, which also make the future
predictions are very challenging.

The authors of [2] proposed an accurate model to
forwardly predict solar irradiation for the next 24 hours
based on the analysis of the post-processing of the recorded
datasets by adapting the order of the utilized polynomial
functions. Furthermore, the authors expanded the proposed
method to render a novel method comprised a bank of 24
Kalman filters working simultaneously on modifying the
polynomial coefficients to estimate solar irradiance inside
an airport. The results showed an acceptable accuracy of
root mean square error = 20 W/m2.

The novelty in the article consists of the real datasets
being collected from the geographical location (Vaasa,
Finland) for 3 successive years, in addition to the
lightweight algorithmic methodology that processes the
recorded data.

The rest of article is organized as follows: Section |
addresses the implemented procedures to collect the solar
irradiance on Vaasa, Finland. Section Il shows the detailed
steps to our methodology in treating the datasets (pre-
processing and post-processing) in addition to Kalman
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algorithms used to obtain most accurate predictions to solar
irradiance. Section Il describes the developed prediction
model to estimate the solar irradiance values in Vaasa. Then,
the article concludes with conclusions and references
sections.

II. MEASURING SOLAR IRRADIANCE IN
FINLAND

In this study, three independent types of measurements
via three sensor devices were pursued: 1) solar irradiance
using pyranometer device, 2) heat flux absorbed by asphalt
using a heat flux plate buried at depth 5 cm beneath the
asphalt layer, 3) the temperature distribution through the
depth using a distributed temperature sensing (DTS)
system. The three methods are complementary to each
other to produce a reliable perspective of the different
ground layers. [1]

The data collection site was embedded underneath the
University of Vaasa — Palosaari campus between 2014—
2016 as illustrated in Figure 1. Data collection site at the
University of Vaasa,
Finland.. The measured values were transferred from the
sensors to the wireless sensor network implemented onsite,
thus values were recorded as raw data by the server.

Figure 1. Data collection site at the University of Vaasa,

Finland.

Then, the data from the server were received by the
wireless gateway, which hand it over to the linked
embedded PC for preprocessing using MATLAB, finally it
was stored on a hard drive [1]. The wireless sensor network
structure is shown in Figure 2.
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Figure 2. A) The location of pyranometer on the
roof top of Tritonia building, Vaasa. B) An illustration
depicting the embedded system for data collection
which comprises the wireless sensor network.

The conducted experiment to measure the quantity of
incident solar irradiance in Vaasa was carried out through
the installation of a Hukseflux pyranometer device on the
lower rooftop of one of the campus buildings (Tritonia
tower) in Vaasa University, which is roughly 11 meters
high. The pyranometer location was pointed directly to the
open skies without suffering any projected shade from the
surroundings. The timestamped samples measured by the
device were sent and stored periodically to the server
storage via wireless sensor network [1]. Between the years
2014-2016, the pyranometer device had gathered
approximately 4.5 million samples of data comprised the
measured solar irradiance in W/m? (Watts per square
meter) every 10 seconds i.e. around 8640 samples per day.
The typical amount of solar irradiance for a clear sunny day
in Vaasa (latitude 63.102°) should follow a bell-shaped
curve whose peak is around noon time when the sun is at
its zenith angle (perpendicular on the surface). The
equations that govern calculating solar irradiance are:

I; = I, %X (sin¢gcosd + cos¢pcosdcosH) (D)

8§ = 23.45° X sin (% x (284 — d)) @)
H=15°x (T —12) 3)
where,

I, irradiance power in W/m?
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global irradiance constant (1000-1376) W/m?
latitude angle from which I; is measured
declination angle in degrees

hourly angle per day time

time of the day in 24-hour format

number of days elapsed since 01/01/20xx

SIS S S

Solar irradiance is -naturally- a fluctuating physical
quantity associated with a high degree of uncertainty also
is directly affected by numerous factors and parameters,
such as: weather conditions, time of the year, time of the
day, sensor bias, and geographical location. Hence,
predicting the amount of incident solar irradiance on a
given geographical location requires parametric estimation,
that is based on both deterministic and uncertain factors.

111. METHODOLOGY AND ALGORITHMS

As mentioned, solar irradiance values are hindered by
numerous factors which make it a challenging task to obtain
an estimation for the incident solar insulation. Moreover, the
datasets are being affected by the conditions of the
surroundings where the physical sensors were installed,
especially the underground sensors. The datasets suffered
from discontinuities, sensor biases, and energy surges when
heavy movable objects pass on the ground above the sensor
compartment. Also, the measurements coming from the
pyranometer device are affected by the weather conditions,
birds and wind blowing. Consequently, the data was
manually pre-processed case-by-case to remove the effects
of non-parametric causes. Then, the prediction method
proceeds with using the state-space estimation concept and
Kalman filter algorithms that recognizes only the weather
conditions. Later, we intend to develop a more complicated
dynamic model to account for other contributing factors.

A. State space estimation

The simplest linear model of state space estimation can
be expressed by the following equations:

X = Ap_1Xg—1 + Q-1 (4)
Yie = Hyxy + 1 5)

where,
Xy state vector at k.
Vi measurement vector at k.
qrx—1  process noise at k-1 where gq,,_;~N (0, Qx_1)-
T measurement noise at k where 1, ~N (0, R},).
H, measurement model matrix at k.
X priori distribution where x,~N (m,, P;).
mg, P,  initial mean and covariance

N normal distribution function
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B. Kalman filters

The Kalman filtering algorithm is an iterative recursive
estimation method to predict the new optimal states in
linear state space systems considering additive white
Gaussian noise. The algorithm is based on utilizing the
prior knowledge to estimate the posterior state, then
calculate the Kalman gain and the measurements residuals
caused by the mismatch error, and finally predict the new
state and covariance vectors to be used as an input to the
next iteration [3-6].

Basically, the Q, matrix (process noise covariance matrix)
should be discretized using matrix fraction decomposition
or the following analytical formula: [6]

Aty
Q) = f exp(F(Aty — 7)) XL Q. LT
’ x exp (F(At, — )T dt

where,

L, F constant matrices

Q. power spectral density matrix
Aty instantaneous time step

IV. NON-LINEAR STATE SPACE ESTIMATION

The nature of most dynamic systems in reality is not linear
hence, the linear Kalman Filter cannot be employed to
estimate the states of these systems. In case of linear
Kalman filter, both system dynamics and measurement
process can yield nonlinear output or at least one of them.
An extension to Kalman filter is required to deal with such
nonlinearity. The solution is the Extended Kalman filter
(EKF) for nonlinear state space estimation, which is based
on Taylor series approximation of the joint distribution to
linearize these systems. In case of severe nonlinear
systems, the unscented Kalman filter (UKF) which is based
on unscented transformation, is proven to be performing far
better than EKF. Other nonlinear state space estimation
extensions are developed such as Gauss-Hermite Kalman
filter (GHKF) and the third-order symmetric Cubature
Kalman filter (CKF). [6-7]

A. Extended Kalman Filter (EKF)

All Kalman filters have two steps: the prediction step,
where the next state of the system is predicted given the
previous measurements, and the update step, where the
current state of the system is estimated given the
measurement at that time step. Based on Taylor series
approximation, EKF tends to linearize the joint
distributions from nonlinear to linear by means of
tangential point at each state estimation. Gaussian
distribution is assumed all the time in EKF, as follows [6]:

x ~ N(m, P) (6)
y=9gx) (7

where x is a normal distribution with m as the distribution
mean, P as the covariance, and g(.) is a general nonlinear
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function of measurements. To solve the distribution of y
based on x, g should be Gaussian as well. In this case, g is
a nonlinear non-Gaussian function so it must be
approximated first. The joint distribution of x and y can be
constructed by linear quadratic approximations such as
deducing the Jacobian matrix of g for each state as follows:

6]

9g;(x)
Gx(m)j,jl = ai_, lx=m (8)
J

The extended Kalman filter (EKF) extends the scope of the
ordinary Kalman filter to nonlinear optimal state estimation
problems by forming Gaussian approximation to the joint
distribution of the state predictions and measurements
using means of Jacobian matrix and Taylor series
approximation up to first and second orders, as follows:

X = f(e—, bk —1) + gy )
Vi = h(xp, k) + 13 (10)
where,
Xi s Vi state and measurements vectors
Q-1+ Tk process and measurements noise

f(),h() nonlinear functions

B. First Order Extended Kalman Filter
Similar to the ordinary Kalman filter, EKF algorithm
consists of two major steps as follows: [8-9]

e Prediction step

mi = f(my_y, k= 1) (11)
Py = F.(my_y,k — 1) Py BT (myy, k= 1) +
Qi1 (12)

e  Update step

Vi = Y — h(my, k) (13)
S = Hy(mig, k) P¢ Hy"(mic, k) + Ry (14)
Ki = Py H," (mig, k) Si* (15)
my = m,: + Kka (16)
Py = Py — KiSKi (17)
where,
my , Py prior mean and covariance
my , Py posterior mean and covariance
Vi measurement residual
Vi measurements vector
Sk measurement prediction covariance
K, filter gain correction coefficient

FE.(m,k —1) Jacobian matrix of function f
H,(m, k) Jacobian matrix of function h

The difference between EKF and KF is the replacement of
matrices A, and H, in Kalman Filter by the Jacobian
F.(m,k—1) and H,(m,k) in EKF. Thus, predicted
mean m; , predicted covariance P, and residual V, are
calculated differently as well.
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C. Limitations of EKF

EKF has few disadvantages which somewhat limit its

operation as described in [10], that led to the development

of the Unscented Kalman Filtering (UKF) to mitigate these

limitations. EKF drawbacks can be summarized as follows:

o EKEF performs poorly in severe nonlinear models due
to the significant approximation.

e Jacobian and Hessian matrices first need to exist in
order to perform the transformation.

e Jacobian and Hessian matrices can be very difficult to
evaluate in many cases.

e Second-order Kalman Filters require extra
computations, which reflects on resources.

An effective way to insert remedies to the EKF output is to
complement it with Kalman smoothers [6].

D. Discrete-time Kalman Smoother (RTS)

The Rauch-Tung-Striebel (RTS) smoother was developed
by the authors of [9, 11, 12]. RTS can be used for
computing the smoothing solution for the state space model
given as a distribution. The basic idea here is to use the
whole distribution over the whole period T, as follows:

p(xilyrr) = N(xe|mi, Pg) (18)

The mean and covariance mj, P; are calculated using the
following formulas:

Mg = Apmy (19)
Picr1 = AP AR + Q. (20)
Cx = PAk[Pi]™ (21)
my = My + Cp[Mp g — Miy4] (22)
P = P+ CelPivs — PG (23)
where,
mj, , Py smoothed mean and covariance
my , P mean and covariance

Mpyq s Peyq  Predicted mean and covariance

Cy smoother gain

The difference between Kalman filter and Kalman
smoother is the recursive movement of the filter forwards
starting from the first-time step k-1 while the smoother
moves backwards starting from the last time step T.

E. Extended RTS Kalman Smoother (ERTS)

Similarly, the difference between First-Order EKF
smoother and KF smoother is the same as the difference
between EKF and KF: the matrices A, and H, in Kalman
smoother are replaced by the Jacobian F.(m,k — 1) and
H,(m,k) in EKF smoother. Equations of ERTSK
smoother become:

Micrq = f(my, k) (24)
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Piyy = F(my, k) Py E.T (my, k) + Qp (25)

Cre = P BT (my, k) [Piciq] 77 (26)
my = my + C[Mppq — My (27)
P = Py + Ci[Piyr — Pl G (28)
where,

my,., Pg smoothed mean and covariance

my , Py mean and covariance

Mpy1 s Py predicted mean and covariance

(o smoother gain

F.(.),H, () Jacobian matrices of functions fand h

V. BUILDING THE SOLAR IRRADIANCE
PREDICTION MODEL

The location of Vaasa, Finland and the hourly times of the
day have been translated into the following parameters:
latitude (¢) angle, declination (o) angle, and hour (H) angle.

A. Modelling the Extended Kalman filtering to estimate
solar irradiance

As can be concluded from equations of section I, the
variables that affect solar irradiance for a fixed location can
be reduced to; declination angle (§) and time of day (H),
provided that the latitude angle (¢ ) is kept constant.
Therefore, the state vector can become x;, = [6,  Hi]T
Assuming there are sensor measurements taken every
second for both states, then y, =[6 H]

Vaasa University coordinates are 63°06'11.4"N
21°35'40.1"E, then latitude angle (¢) = 63.10322°

It is clear that calculating solar irradiance is a nonlinear
state space estimation hence, the extended Kalman filter
(EKF) method will be used in this example.

B. Jacobian matrices

EKF uses Jacobian matrices to perform the Gaussian
approximation. Assuming that the dynamic function is the
same as the measurement function, then the Jacobians in
this example become as follows:

Fe(m, k) = He(m, ) = (7 /55 /5y | (29)
_ [1000(—sing¢.sind — cos¢.siné.cosH) T

1000(0 — cos¢. cosé.sinH) (30)

C. Initial state vector x_init

Starting from initial position (t = 0) at 00:00, day number
is 70 i.e. 11t March 2015, therefore the initial condition
vector becomes:

Xinit = [60 Ho 1" =[-12.10° -179.99°]" (31)

The full MATLAB code for solar irradiance estimation
using Extended Kalman filter and ERTS smoother can be
found in Appendix I. The results of estimating solar
irradiance using Jacobian matrices for a single day are
found in Figure 3.
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(A)

(B)

Figure 3. A) EKF estimations of solar irradiance in Vaasa
for the 11" of March 2015. B) A zoomed version of the “A”
plot. The blue curve refers to ideal values, red dots refer to
measurements, and the yellow curve refers to the filtered
values. The results of estimating solar irradiance using
Jacobian matrices for n consecutive days starting from the
11th of March 2015 are illustrated in Figure 4.
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Figure 4. Solar irradiance estimation for several days in
March 2015. A) when n = 3 consecutive days, and B) when
n = 5 consecutive days.
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The mean square error of EKF estimations was:
e EKF-MSE = 0.0621 watt/m"2

D. Applying the Extended Kalman smoother (ERTS)
algorithm

The ERTS algorithm was used to fine-tune the results of
EKF estimates as shown in 5.

ERTS st st of sole it i Vita

"r*F}ﬂW W “ﬂ Hw o,

”'Hﬁ .‘__' |

Figure 5. The results of ERTS smoother for solar
irradiance predictions (11" March 2015).

The Mean Square Error (MSE) of all solar irradiance
estimation methods were as follows:

Using EKF: EKF-MSE = 0.0623 watt/m"2
Using ERTS: ERTS-MSE = 0.0614 watt/m"2

Judging by the given results and plots, clearly the ERTS
smoother outperform the original EKF estimations even if
with small improvements in the mean square error.

VI. CONCLUSIONS

Renewable energy sources are very crucial for daily life
activities especially in remote countries that suffer from
solar heat and light deficiencies. As a Nordic country,
Finland struggles with providing the necessary energy
sources throughout the dark cold winter which prevail for
more than six months every year. Energy storage could be
a key element for Finland to harvest solar light and heat
(warmth) during the long sunny days of summer, which can
be used for the small energy burden of summer, and store
the excessive for later use. In this article, we experimented
the harvesting of incident solar irradiance on the city of
Vaasa (Finland) using physical heat sensors buried beneath
the earth's surface and a pyranometer device mounted on a
building's rooftop. We proposed a simple state-space
estimation technique using extended Kalman filter (EKF)
and smoother (ERTS) to predict the incident solar
irradiation on Vaasa. The results showed an unmatched
performance for the given algorithm which yield an
acceptable estimation accuracy for the proposed model. For
future work, we plan to develop more advanced dynamic
model that resembles the solar irradiance on Finland by
considering other contributing factors including the
extraterrestrial values and atmospheric absorption effects.

REFERENCES


User
Placed Image


[1] C. Cuhac, A. Mékiranta, P. Valisuo, E. Hiltunen and
M. Elmusrati, "Temperature Measurements on a
Solar and Low Enthalpy Geothermal Open-Air
Asphalt Surface Platform in a Cold Climate Region,"
Energies, vol. 13, no. 979, 2020.

[2] C. Lynch, M. J. O'Mahony and R. A. Guinee, "A
novel 24 kalman filter bank estimator for solar
irradiance prediction for PV power generation," 2015
IEEE 42nd Photovoltaic Specialist Conference
(PVSC), New Orleans, LA, USA, 2015, pp. 1-7.

[3] L. Kleeman, "Understanding and Applying Kalman
Filtering,” Proceedings of the Second Workshop on
Perceptive Systems, Curtin University of Technology
Perth Western Australia, 1996.

[4] R.E. Kalman, "A New Approach to Linear Filtering
and Prediction Problems,” Transactions of the
ASME-Journal of Basic Engineering, vol. 82, pp. 35-
45, 1960.

[5] R. Faragher, "Understanding the Basis of the Kalman
Filter Via a Simple and Intuitive Derivation," IEEE
Signal Processing Magazine , pp. 128-132, 2012.

[6] J. Hartikainen, A. Solin and S. Sarkka, Optimal
Filtering with Kalman Filters and Smoothers: a
Manual for the MATLAB toolbox EKF/UKF, vol.
1.3, Espoo: Aalto University: Department of
Biomedical Engineering and Computational Science,
2011.

[7] S. Séarkkd, “Recursive Bayesian Inference On
Stochastic Differential Equations”, Espoo: Helsinki
University of  Technology Laboratory  of
Computational Engineering Publications, 2006.

[8] S. Sarkkd, A. Vehtari and J. Lampinen, "Rao-
Blackwellized particle filter for multiple target
tracking," Information Fusion, pp. 2-15, 2007.

[9] Y. Bar-Shalom, X.-R. Li and T. Kirubarajan,
Estimation with Applications to Tracking and
Navigation, Toronota: Wiley-Interscience, 2001.

[10] S. Julier and J. Uhlmann, "Unscented filtering and
nonlinear estimation,” in Proceedings of the IEEE,
2004.

[11] H. E. Rauch, F. Tung and C. T. Striebel, "Maximum
likelihood estimates of linear dynamic systems,"
AIAA, vol. 3, no. 8, p. 1445, 1965.

[12] A. Gelb, J. Joseph F. Kasper, J. Raymond A. Nash,
C. F. Price and J. Arthuer A. Sutherland, Applied
Optimal Estimation, London: MIT Press, 1974.

2023 5dgs 1 3uall 1 bl Agaaall Eagoey)l dAlma

APPENDIX |

MATLAB code for the nonlinear estimation of solar
irradiance in VVaasa, Finland.

clc; close all; clear variables;
df func = @Fx;
dh func = @Hx;

phi=63.1032222; % Univaasa latitude

elapsed=86400; % Elapsed time in
seconds

t=1:elapsed; % Time iterations
n=2; % No. of states
[delta; H]

states=zeros (n,elapsed) ; %

Preallocation of state vector
% Initial guesses for delta and Hour
angle H

X 1nit=[23.45*sind(211.0685-1.1416e-
05);...

15%((1/3600)-12)1;

Y=zeros (2,elapsed) ; %
Preallocation of measurements vector
Yreal=zeros (l,elapsed); %
Preallocation states -> real
delta=zeros (l,elapsed); %
Preallocation of delta vector
HourAng=zeros (l,elapsed) ; %

Preallocation of Hour angle vector
Yrealstates=zeros (2,elapsed);
Preallocation of real state vector
for i=l:elapsed
states (:,1)=[23.45*sind (211.0685-
i*1.1416e-05) ;...
15*((1/3600)*1-12)1;
delta(:,i)=states(1,1);
HourAng(:,i)=states(2,1i);

oo

Yrealstates(:,1i)=[delta(l,1i);HourAng
1,i)]:

Yreal (:,i)=irrad(phi,delta(:,1i),HourA
ng(:,1));
delta(:,1i)=states(1l,1i)+gauss rnd (1,2,

1); % gauss rnd(mean, var, samples)

HourAng(:,1i)=states (2,1)+gauss_rnd (1,

5,1);

end

Ymstates=[delta;HourAng]; %
Saving measurement vector

Ym=irrad (phi,delta, HourAng) ; %

Mapping measurements to values

% Preparing for EKF algorithm

MM = zeros (n,elapsed) ; %
Preallocation of estimates vector
PP = zeros (n,n,elapsed) ; %
Preallocation of covariance vector
M=x init; % Initial

state guess
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MM=x init;

pl=0.1;

p2=0.2;

P=diag([pl p2]); % Initial
covariance guess

r=4;

R=r*eye (n) ; % Measurement
noise covariance

gl=0.01;

g2=0.02;

O=diag([gl g2]); % Process noise
covariance

for i=2:elapsed

Q

% Predicition step

M=states (:,i-1); % States via
nonlinear function f

F=diag (Fx (phi, M) ) ; % Calculating
Jacobian F

H=diag (Hx (phi,M)) ; % Calculating

Jacobian H

F=eye (n) ; % Reducing Jacobian

o\

F to Identity matrix

% H=eye (n); % Reducing Jacobian
H to Identity matrix

P=F*P* (F) '+Q; % Predicting
covariance

Q

% Update step

v=Y¥mstates (:,1i)-Yrealstates(:,1);
S=H*P* (H) '+R;

K=P*H'*inv (S) ;

M=M+K*v;

P=P-K*S*K';

% Saving states & covariance

MM (:,1) = M;
PP(:,:,1) = P;
end

[}

% Mapping estimated states to values
estimated=zeros (1l,elapsed);
for k=l:elapsed

estimated(:, k)=irrad(phi, MM (1, k),MM (2
rK))

end

% Plotting results

figure;

plot (duration(0,0,t),Yreal,
duration(0,0,t),Ym, '+', ...

duration(0,0,t),estimated, 'linewidth'’
,1, 'markersize', 1)

grid on;

legend('Ideal values', 'Measurements',
'EKF estimated')

xlabel ('Time of day')

ylabel ('Solar Irradiance [W/m"2]")

title ('EKF estimation of solar
irradiance in Vaasa')
figure;

plot (duration(0,0,t), Yreal,
duration (0,0, t),estimated)

grid on;

legend ('Real values', 'EKF estimated')
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% Computing Mean square error of
estimates

MSE =
Yreal) ."2) /elapsed;
fprintf ('EKF-MSE =
%.4f\n', sqrt (MSE) ) ; % Result shown
in Watts/m”2

sum ( (estimated-

% Function declaration

% Irradiance function (phi,delta,Hour
Angle)

function I=irrad(phi,delta,HourAng)
I=1000.* (sind (phi) .*cosd(delta) +cosd(
phi) . *cosd(delta) . *cosd (HourAng)) ;
end

% Jacboian of nonlinear F equation
function dI = Fx(phi,M)

phi=phi;

delta = M(1,:);

HourAng = M(2,:);

dI = [1000* (-sind(phi) *sind (delta) -
cosd (phi) *sind (delta) *cosd (HourAng) ),

1000* (0-
cosd (phi) *cosd (delta) *sind (HourAng) ) ]
end
% Jacboian of nonlinear H equation
% Assuming same function for F & H
function dI = Hx(phi,M)
phi=phi;
delta = M(1,:);
HourAng = M(2,:);
dI = [1000* (-sind (phi) *sind (delta) -
cosd (phi) *sind(delta) *cosd (HourAng)),

1000* (0-
cosd (phi) *cosd (delta) *sind (HourAng) ) ]

end
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