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Abstract- A huge source of energy lies within 

the incident solar heat and light from the sun, 

especially for colder territories found in the 

Nordics such as Finland. For a country situated 

with close proximity to the North pole, Finland 

suffers from chilling conditions most of the year 

in addition to the withheld Sun light. Except 

during the very short seasons of spring and 

summer when the Sun remains in the sky for 

almost 22 hours per day on average. Thus, solar 

heat flux and solar irradiation become essential 

energy sources between April and September 

annually. However, solar irradiance is a 

physical quantity that is highly affected by 

probabilistic uncertainty found in many 

weather conditions, solar behavior throughout 

the year, time of the day, and the geographical 

location. In this article, we propose a solar 

irradiance estimation method base on the 

Extended Kalman algorithms. The experiment 

was carried out between the years 2014-2016 in 

which we installed solar radiation sensors 

underground and on a rooftop inside the 

campus of Vaasa University. The readings were 

collected via an embedded system specifically 

designed for the endeavors of this experiment. 

The results showed that the algorithm was able 

to predict the incident solar irradiance on the 

city of Vaasa (Finland) with an acceptable 

accuracy range. 

Keywords— solar irradiance, extended Kalman filter, 

probability and stochastics 

وتتزايد  الملخص:   جدًا  ضرورية  صارت  المتجددة  الطاقة  مصادر 
مثل    أهميتها مع الشح في الحصول على مصادر الطاقة الاحفورية

لأسباب   أو  وجودها  محدودية  مثل  طبيعية  لأسباب  والغاز  النفط 
أهمية الطاقة المتجددة مثل الطاقة الشمسية لها  .    سياسية وغيرها

خاصة في بلدان اقصى الشمال الأوروبي مثل دول البلطيق    أهمية
و التي تعاني من البرد الشديد في الشتاء المظلم والذي يمتد لمدة قد  

أشهر في السنة تقريبا. وفي هذه الدول ومنها فنلندا    6تصل الى  
لتلبية   الشمس  من  الحرارية  الطاقة  تخزين  إمكانية  في  توجه  يوجد 
احتياجات الطاقة في الصيف وإمكانية تخزين هذه الطاقة لاستعمالها 
الشتاء حيث   فنلندا عكس  في  الصيف  المظلم.  الشتاء  خلال فصل 

الشمس لأكثر من   المناطق  ساعة في    20تشرق  اليوم في بعض 
المواضيع   تعتبر من  الطويل  النهار  فإمكانية الاستفادة من  وبالتالي 

في هذا البحث  .  البحثية المهمة في فنلندا ودول الشمال بشكل عام
قمنا باستحداث متحسس حراري لاسلكي يقوم بتجميع معلومات الحرارة  

عة في  من الشمس وتم دفنه تحت الاسفلت في موقف سيارات الجام
على   وتم وضعه  الشمسية  الاشعة  كثافة  لقياس  فازا وجهاز  مدينة 
اعلى مبنى الجامعة. الغرض من تجميع البيانات هو الحصول على  
وكثافة   تجميعا  يمكن  التي  الحرارة  بين  العلاقة  حول  دقيق  نموذج 
يتم   التي  البيانات  ان  المشكلة  الصيف.  أيام  مع  الشمسية  الاشعة 

دا تكون متأثرة بضجيج مضاف وكذلك بعض  تجميعها وهي ضخمة ج
تتوقف   عندما  مثلا  المشاكل  من  البيانات.  في  الحيود  أو  الانقطاع 
أو   الشمسية  الاشعة  منع  فيسبب  البيانات  تجميع  مكان  في  سيارة 
الطاقة  تزويد  في  اعطال  أحيانا حدوث  أو  او غيوم.  عبور سحابة 

هذ معالجة  الى  نحتاج  وبالتالي  اللاسلكي.  البيانات  للمتحسس  ه 
وتنقيتها من الضجيج المرافق وكذلك توقع البيانات الناقصة وكذلك  
الاشعة   مقياس  مع  الحراري  المتحسس  لبيانات  الأمثل  الدمج 
لتقدير   بسيطة  تقنية  قدمنا  المقالة  هذه  في  فإننا  ولهذا  الشمسية. 
كالمان  مرشح  باستخدام  فاسا  على  الواقع  الشمسي  الإشعاع 
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البيانا وتمهي  (EKF) عالموس أظهرت   (ERTS) تد  للتوقعات. 
النتائج أداءً غير مسبوق للخوارزمية المعطاة التي أفضت إلى تقدير  
نعتزم  المستقبلية،  للأعمال  بالنسبة  المقترح.  النموذج  لدقة  مقبول 
تطوير نموذج ديناميكي أكثر تقدمًا يشبه الإشعاع الشمسي في فنلندا  

ت مساهمة  أخرى  عوامل  اعتبار  طريق  الفضائية  عن  القيم  شمل 
 . الخارجية وتأثيرات الامتصاص الجوي 

المفتاحية الشمسيالكلمات  الإشعاع  الموسع،  :  كالمان  مرشح   ،
 الاحتمالات والقيم العشوائية 

I. INTRODUCTION 

The sun provides our planet with renewable sources of 
energy, not only found in light energy but also in heat 
energy. The earth is being showered by massive bursts of 
energy coming from the sun every moment throughout the 
day. It is estimated that most of the utilized energy from the 
sun is light-based while the most wasted energy is the 
renewable heat and warmth incident from our star. 

Solar irradiance, also known as “solar insolation”, it is 
the quantity of sunlight power received from the sun per unit 
area on earth’s surface, measured in watt per meter square 
[W/m2]. Nearly 30% of the incident light power received on 
earth’s surface is attenuated by earth’s atmosphere i.e. the 
solar irradiance outside the atmosphere (extra-terrestrial) is 
always greater than the solar irradiance on earth’s surface 
(terrestrial) [1]. Moreover, knowing the quantity of incident 
solar irradiance is very beneficial for some photovoltaic 
scheduling applications [2]. 

The amount of incident solar irradiance depends on 
numerous factors and parameters. This physical quantity is 
highly sensitive to the weather conditions, time of the year 
and time of the day, the geographical location where it is 
been measured, and the sensitivity of the measuring 
equipment. Therefore, the nature of solar irradiance is found 
to be nonlinear stochastic process that contains higher 
degrees of uncertainty, which also make the future 
predictions are very challenging. 

The authors of [2] proposed an accurate model to 
forwardly predict solar irradiation for the next 24 hours 
based on the analysis of the post-processing of the recorded 
datasets by adapting the order of the utilized polynomial 
functions. Furthermore, the authors expanded the proposed 
method to render a novel method comprised a bank of 24 
Kalman filters working simultaneously on modifying the 
polynomial coefficients to estimate solar irradiance inside 
an airport. The results showed an acceptable accuracy of 
root mean square error = 20 W/m2. 

The novelty in the article consists of the real datasets 
being collected from the geographical location (Vaasa, 
Finland) for 3 successive years, in addition to the 
lightweight algorithmic methodology that processes the 
recorded data. 

The rest of article is organized as follows: Section I 

addresses the implemented procedures to collect the solar 

irradiance on Vaasa, Finland. Section II shows the detailed 

steps to our methodology in treating the datasets (pre-

processing and post-processing) in addition to Kalman 

algorithms used to obtain most accurate predictions to solar 

irradiance. Section III describes the developed prediction 

model to estimate the solar irradiance values in Vaasa. Then, 

the article concludes with conclusions and references 

sections. 

II. MEASURING SOLAR IRRADIANCE IN 

FINLAND 

 

In this study, three independent types of measurements 

via three sensor devices were pursued: 1) solar irradiance 

using pyranometer device, 2) heat flux absorbed by asphalt 

using a heat flux plate buried at depth 5 cm beneath the 

asphalt layer, 3) the temperature distribution through the 

depth using a distributed temperature sensing (DTS) 

system. The three methods are complementary to each 

other to produce a reliable perspective of the different 

ground layers. [1] 

The data collection site was embedded underneath the 

University of Vaasa – Palosaari campus between 2014—

2016 as illustrated in Figure 1. Data collection site at the 

University of Vaasa,  

Finland.. The measured values were transferred from the 

sensors to the wireless sensor network implemented onsite, 

thus values were recorded as raw data by the server.  

 

 

 
 

 

Figure 1. Data collection site at the University of Vaasa,  

Finland. 

Then, the data from the server were received by the 

wireless gateway, which hand it over to the linked 

embedded PC for preprocessing using MATLAB, finally it 

was stored on a hard drive [1]. The wireless sensor network 

structure is shown in Figure 2. 
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(A) 

 
(B) 

 

Figure 2. A) The location of pyranometer on the 

roof top of Tritonia building, Vaasa. B) An illustration 

depicting the embedded system for data collection 

which comprises the wireless sensor network. 

 

The conducted experiment to measure the quantity of 

incident solar irradiance in Vaasa was carried out through 

the installation of a Hukseflux pyranometer device on the 

lower rooftop of one of the campus buildings (Tritonia 

tower) in Vaasa University, which is roughly 11 meters 

high. The pyranometer location was pointed directly to the 

open skies without suffering any projected shade from the 

surroundings. The timestamped samples measured by the 

device were sent and stored periodically to the server 

storage via wireless sensor network [1]. Between the years 

2014–2016, the pyranometer device had gathered 

approximately 4.5 million samples of data comprised the 

measured solar irradiance in W/m2 (Watts per square 

meter) every 10 seconds i.e. around 8640 samples per day. 

The typical amount of solar irradiance for a clear sunny day 

in Vaasa (latitude 63.102⁰) should follow a bell-shaped 

curve whose peak is around noon time when the sun is at 

its zenith angle (perpendicular on the surface). The 

equations that govern calculating solar irradiance are:  

 

𝐼𝑠 =   𝐼𝑐 × (sin 𝜙 cos 𝛿  + cos 𝜙 cos 𝛿 cos 𝐻)    (1) 

𝛿 = 23.45° × sin (
360

365
× (284 − 𝑑))     (2) 

𝐻 = 15° × (𝑇 − 12)       (3) 

 

where, 

𝐼𝑠 irradiance power in W/m2 

𝐼𝑐 global irradiance constant (1000-1376) W/m2 

𝜙 latitude angle from which 𝐼𝑠 is measured 

𝛿 declination angle in degrees 

𝐻 hourly angle per day time 

𝑇 time of the day in 24-hour format 

𝑑 number of days elapsed since 01/01/20xx 

 

Solar irradiance is -naturally- a fluctuating physical 

quantity associated with a high degree of uncertainty also 

is directly affected by numerous factors and parameters, 

such as: weather conditions, time of the year, time of the 

day, sensor bias, and geographical location. Hence, 

predicting the amount of incident solar irradiance on a 

given geographical location requires parametric estimation, 

that is based on both deterministic and uncertain factors. 

 

III. METHODOLOGY AND ALGORITHMS 

As mentioned, solar irradiance values are hindered by 

numerous factors which make it a challenging task to obtain 

an estimation for the incident solar insulation. Moreover, the 

datasets are being affected by the conditions of the 

surroundings where the physical sensors were installed, 

especially the underground sensors. The datasets suffered 

from discontinuities, sensor biases, and energy surges when 

heavy movable objects pass on the ground above the sensor 

compartment. Also, the measurements coming from the 

pyranometer device are affected by the weather conditions, 

birds and wind blowing. Consequently, the data was 

manually pre-processed case-by-case to remove the effects 

of non-parametric causes. Then, the prediction method 

proceeds with using the state-space estimation concept and 

Kalman filter algorithms that recognizes only the weather 

conditions. Later, we intend to develop a more complicated 

dynamic model to account for other contributing factors. 

A. State space estimation 

The simplest linear model of state space estimation can 
be expressed by the following equations: 

𝑥𝑘 = 𝐴𝑘−1𝑥𝑘−1 + 𝑞𝑘−1     (4) 

𝑦𝑘 = 𝐻𝑘𝑥𝑘 + 𝑟𝑘    (5) 

 

where, 

𝑥𝑘 state vector at k. 

𝑦𝑘  measurement vector at k. 

𝑞𝑘−1 process noise at k-1 where 𝑞𝑘−1~𝑁(0, 𝑄𝑘−1). 

𝑟𝑘 measurement noise at k where 𝑟𝑘~𝑁(0, 𝑅𝑘). 

𝐻𝑘 measurement model matrix at k. 

𝑥0 priori distribution where 𝑥0~𝑁(𝑚0, 𝑃0). 

𝑚0, 𝑃0 initial mean and covariance  

N normal distribution function 
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B. Kalman filters 

The Kalman filtering algorithm is an iterative recursive 

estimation method to predict the new optimal states in 

linear state space systems considering additive white 

Gaussian noise. The algorithm is based on utilizing the 

prior knowledge to estimate the posterior state, then 

calculate the Kalman gain and the measurements residuals 

caused by the mismatch error, and finally predict the new 

state and covariance vectors to be used as an input to the 

next iteration [3-6]. 

 

Basically, the 𝑄𝑘 matrix (process noise covariance matrix) 

should be discretized using matrix fraction decomposition 

or the following analytical formula: [6] 

 

𝑄𝑘 = ∫ exp(𝐹(∆𝑡𝑘 − 𝜏))  × 𝐿 𝑄𝑐  𝐿𝑇
∆𝑡𝑘

0

×  exp (𝐹(∆𝑡𝑘 − 𝜏))𝑇  𝑑𝜏 

 

where, 

L, F    constant matrices  

𝑄𝑐 power spectral density matrix 

∆𝑡𝑘 instantaneous time step 

 

IV. NON-LINEAR STATE SPACE ESTIMATION 

The nature of most dynamic systems in reality is not linear 

hence, the linear Kalman Filter cannot be employed to 

estimate the states of these systems. In case of linear 

Kalman filter, both system dynamics and measurement 

process can yield nonlinear output or at least one of them. 

An extension to Kalman filter is required to deal with such 

nonlinearity. The solution is the Extended Kalman filter 

(EKF) for nonlinear state space estimation, which is based 

on Taylor series approximation of the joint distribution to 

linearize these systems. In case of severe nonlinear 

systems, the unscented Kalman filter (UKF) which is based 

on unscented transformation, is proven to be performing far 

better than EKF. Other nonlinear state space estimation 

extensions are developed such as Gauss-Hermite Kalman 

filter (GHKF) and the third-order symmetric Cubature 

Kalman filter (CKF). [6-7] 

 

A. Extended Kalman Filter (EKF) 

All Kalman filters have two steps: the prediction step, 

where the next state of the system is predicted given the 

previous measurements, and the update step, where the 

current state of the system is estimated given the 

measurement at that time step. Based on Taylor series 

approximation, EKF tends to linearize the joint 

distributions from nonlinear to linear by means of 

tangential point at each state estimation. Gaussian 

distribution is assumed all the time in EKF, as follows [6]: 

 

𝑥 ~ 𝑁(𝑚, 𝑃)    (6) 

𝑦 = 𝑔(𝑥)     (7) 

 

where x is a normal distribution with m as the distribution 

mean, P as the covariance, and g(.) is a general nonlinear 

function of measurements. To solve the distribution of y 

based on x, g should be Gaussian as well. In this case, g is 

a nonlinear non-Gaussian function so it must be 

approximated first. The joint distribution of x and y can be 

constructed by linear quadratic approximations such as 

deducing the Jacobian matrix of g for each state as follows: 

[6] 

𝐺𝑥(𝑚)𝑗,𝑗′ =
𝜕𝑔𝑗(𝑥)

𝜕𝑥𝑗′
|𝑥=𝑚     (8) 

 

The extended Kalman filter (EKF) extends the scope of the 

ordinary Kalman filter to nonlinear optimal state estimation 

problems by forming Gaussian approximation to the joint 

distribution of the state predictions and measurements 

using means of Jacobian matrix and Taylor series 

approximation up to first and second orders, as follows: 

 

𝑥𝑘 = 𝑓(𝑥𝑘−1, 𝑘 − 1) + 𝑞𝑘−1    (9) 

  𝑦𝑘 = ℎ(𝑥𝑘 , 𝑘) + 𝑟𝑘      (10) 

where, 

 

𝑥𝑘 , 𝑦𝑘 state and measurements vectors 

𝑞𝑘−1 , 𝑟𝑘 process and measurements noise 

𝑓(. ) , ℎ(. ) nonlinear functions 

 

B. First Order Extended Kalman Filter 

Similar to the ordinary Kalman filter, EKF algorithm 

consists of two major steps as follows: [8-9] 

• Prediction step 

𝑚𝑘
− = 𝑓(𝑚𝑘−1, 𝑘 − 1)   (11) 

𝑃𝑘
− = 𝐹𝑥(𝑚𝑘−1, 𝑘 − 1) 𝑃𝑘−1 𝐹𝑥

𝑇(𝑚𝑘−1, 𝑘 − 1) +
𝑄𝑘−1  (12) 

 

• Update step     

𝑉𝑘 = 𝑦𝑘 − ℎ(𝑚𝑘
−, 𝑘)    (13) 

𝑆𝑘 = 𝐻𝑥(𝑚𝑘
−, 𝑘) 𝑃𝑘

− 𝐻𝑥
𝑇(𝑚𝑘

−, 𝑘) + 𝑅𝑘  (14) 

𝐾𝑘 = 𝑃𝑘
− 𝐻𝑥

𝑇(𝑚𝑘
−, 𝑘) 𝑆𝑘

−1    (15) 

𝑚𝑘 = 𝑚𝑘
− + 𝐾𝑘𝑉𝑘    (16) 

𝑃𝑘 = 𝑃𝑘
− − 𝐾𝑘𝑆𝑘𝐾𝑘

𝑇    (17) 

where, 

𝑚𝑘
− , 𝑃𝑘

− prior mean and covariance 

𝑚𝑘 , 𝑃𝑘 posterior mean and covariance 

𝑉𝑘 measurement residual 

𝑦𝑘  measurements vector 

𝑆𝑘 measurement prediction covariance 

𝐾𝑘 filter gain correction coefficient 

𝐹𝑥(𝑚, 𝑘 − 1) Jacobian matrix of function f 

𝐻𝑥(𝑚, 𝑘) Jacobian matrix of function h 

 

The difference between EKF and KF is the replacement of 

matrices 𝐴𝑘  and 𝐻𝑘  in Kalman Filter by the Jacobian 

𝐹𝑥(𝑚, 𝑘 − 1)  and 𝐻𝑥(𝑚, 𝑘)  in EKF. Thus, predicted 

mean  𝑚𝑘
− , predicted covariance 𝑃𝑘

−  and residual 𝑉𝑘  are 

calculated differently as well.  
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C. Limitations of EKF 

EKF has few disadvantages which somewhat limit its 

operation as described in [10], that led to the development 

of the Unscented Kalman Filtering (UKF) to mitigate these 

limitations. EKF drawbacks can be summarized as follows: 

• EKF performs poorly in severe nonlinear models due 

to the significant approximation.  

• Jacobian and Hessian matrices first need to exist in 

order to perform the transformation. 

• Jacobian and Hessian matrices can be very difficult to 

evaluate in many cases. 

• Second-order Kalman Filters require extra 

computations, which reflects on resources. 

An effective way to insert remedies to the EKF output is to 

complement it with Kalman smoothers [6]. 

 

D. Discrete-time Kalman Smoother (RTS) 

The Rauch-Tung-Striebel (RTS) smoother was developed 

by the authors of [9, 11, 12]. RTS can be used for 

computing the smoothing solution for the state space model 

given as a distribution. The basic idea here is to use the 

whole distribution over the whole period T, as follows: 

 

𝑝(𝑥𝑘|𝑦1:𝑇) = 𝑁(𝑥𝑘|𝑚𝑘
𝑠 , 𝑃𝑘

𝑠)   (18) 

 

The mean and covariance 𝑚𝑘
𝑠 , 𝑃𝑘

𝑠 are calculated using the 

following formulas: 

 

𝑚𝑘+1
− = 𝐴𝑘𝑚𝑘    (19) 

𝑃𝑘+1
− = 𝐴𝑘𝑃𝑘𝐴𝑘

𝑇 + 𝑄𝑘   (20) 

𝐶𝑘 = 𝑃𝑘𝐴𝑘
𝑇[𝑃𝑘+1

− ]−1    (21) 

𝑚𝑘
𝑠 = 𝑚𝑘 + 𝐶𝑘[𝑚𝑘+1

𝑠 − 𝑚𝑘+1
− ]  (22) 

𝑃𝑘
𝑠 = 𝑃𝑘 + 𝐶𝑘[𝑃𝑘+1

𝑠 − 𝑃𝑘+1
− ]𝐶𝑘

𝑇  (23) 

where, 

𝑚𝑘
𝑠  , 𝑃𝑘

𝑠 smoothed mean and covariance 

𝑚𝑘 , 𝑃𝑘 mean and covariance 

𝑚𝑘+1
−  , 𝑃𝑘+1

−  predicted mean and covariance 

𝐶𝑘 smoother gain 

 

The difference between Kalman filter and Kalman 

smoother is the recursive movement of the filter forwards 

starting from the first-time step k-1 while the smoother 

moves backwards starting from the last time step T.  

 

E. Extended RTS Kalman Smoother (ERTS) 

Similarly, the difference between First-Order EKF 

smoother and KF smoother is the same as the difference 

between EKF and KF: the matrices 𝐴𝑘 and 𝐻𝑘 in Kalman 

smoother are replaced by the Jacobian 𝐹𝑥(𝑚, 𝑘 − 1) and 

𝐻𝑥(𝑚, 𝑘)  in EKF smoother. Equations of ERTSK 

smoother become: 

 

𝑚𝑘+1
− = 𝑓(𝑚𝑘, 𝑘)   (24) 

𝑃𝑘+1
− = 𝐹𝑥(𝑚𝑘, 𝑘) 𝑃𝑘  𝐹𝑥

𝑇(𝑚𝑘, 𝑘) + 𝑄𝑘  (25) 

𝐶𝑘 = 𝑃𝑘  𝐹𝑥
𝑇(𝑚𝑘, 𝑘) [𝑃𝑘+1

− ]−1   (26) 

𝑚𝑘
𝑠 = 𝑚𝑘 + 𝐶𝑘[𝑚𝑘+1

𝑠 − 𝑚𝑘+1
− ]   (27) 

𝑃𝑘
𝑠 = 𝑃𝑘 + 𝐶𝑘[𝑃𝑘+1

𝑠 − 𝑃𝑘+1
− ]𝐶𝑘

𝑇   (28) 

where, 

𝑚𝑘
𝑠  , 𝑃𝑘

𝑠 smoothed mean and covariance 

𝑚𝑘 , 𝑃𝑘 mean and covariance 

𝑚𝑘+1
−  , 𝑃𝑘+1

−  predicted mean and covariance 

𝐶𝑘 smoother gain 

𝐹𝑥(. ) , 𝐻𝑥(. )   Jacobian matrices of functions f and h 

 

 

V. BUILDING THE SOLAR IRRADIANCE 

PREDICTION MODEL 

The location of Vaasa, Finland and the hourly times of the 

day have been translated into the following parameters: 

latitude (ϕ) angle, declination (δ) angle, and hour (H) angle. 

A. Modelling the Extended Kalman filtering to estimate 

solar irradiance 

As can be concluded from equations of section II, the 

variables that affect solar irradiance for a fixed location can 

be reduced to; declination angle (𝛿) and time of day (H), 

provided that the latitude angle ( 𝜙 ) is kept constant. 

Therefore, the state vector can become  x𝑘 = [𝛿𝑘 𝐻𝑘]T 

Assuming there are sensor measurements taken every 

second for both states, then   𝑦𝑘 = [𝛿 𝐻] 
Vaasa University coordinates are 63°06'11.4"N 

21°35'40.1"E, then latitude angle (𝜙) = 63.10322⁰ 

It is clear that calculating solar irradiance is a nonlinear 

state space estimation hence, the extended Kalman filter 

(EKF) method will be used in this example. 

 

B. Jacobian matrices 

EKF uses Jacobian matrices to perform the Gaussian 

approximation. Assuming that the dynamic function is the 

same as the measurement function, then the Jacobians in 

this example become as follows: 

 

Fx(𝑚, 𝑘) = Hx(𝑚, 𝑘) = [𝜕𝐼
𝜕𝛿𝑘

⁄ 𝜕𝐼
𝜕𝐻𝑘

⁄ ]   (29) 

= [
1000(−𝑠𝑖𝑛𝜙. 𝑠𝑖𝑛𝛿 − 𝑐𝑜𝑠𝜙. 𝑠𝑖𝑛𝛿. 𝑐𝑜𝑠𝐻)

1000(0 − 𝑐𝑜𝑠𝜙. 𝑐𝑜𝑠𝛿. 𝑠𝑖𝑛𝐻)
]

𝑇

  (30) 

 

C. Initial state vector x_init 

Starting from initial position (𝑡 = 0) at 00:00, day number 

is 70 i.e. 11th March 2015, therefore the initial condition 

vector becomes: 

𝑥𝑖𝑛𝑖𝑡 = [𝛿0 𝐻0 ]𝑇 = [−12.10⁰ −179.99⁰]𝑇  (31) 

 

The full MATLAB code for solar irradiance estimation 

using Extended Kalman filter and ERTS smoother can be 

found in Appendix I. The results of estimating solar 

irradiance using Jacobian matrices for a single day are 

found in Figure 3. 
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(A) 

 
(B) 

Figure 3. A) EKF estimations of solar irradiance in Vaasa 

for the 11th of March 2015. B) A zoomed version of the “A” 

plot. The blue curve refers to ideal values, red dots refer to 

measurements, and the yellow curve refers to the filtered 

values. The results of estimating solar irradiance using 

Jacobian matrices for n consecutive days starting from the 

11th of March 2015 are illustrated in Figure 4. 

 

 
(A) 

 
(B) 

 

Figure 4. Solar irradiance estimation for several days in 

March 2015. A) when n = 3 consecutive days, and B) when 

n = 5 consecutive days. 

 

The mean square error of EKF estimations was:  

• EKF-MSE = 0.0621 watt/m^2 

D. Applying the Extended Kalman smoother (ERTS) 

algorithm 

The ERTS algorithm was used to fine-tune the results of 

EKF estimates as shown in 5. 

 

 
Figure 5. The results of ERTS smoother for solar 

irradiance predictions (11th March 2015). 

The Mean Square Error (MSE) of all solar irradiance 

estimation methods were as follows: 

Using EKF:  EKF-MSE = 0.0623 watt/m^2 

Using ERTS: ERTS-MSE = 0.0614 watt/m^2 

 

Judging by the given results and plots, clearly the ERTS 

smoother outperform the original EKF estimations even if 

with small improvements in the mean square error. 

 

VI. CONCLUSIONS 

Renewable energy sources are very crucial for daily life 

activities especially in remote countries that suffer from 

solar heat and light deficiencies. As a Nordic country, 

Finland struggles with providing the necessary energy 

sources throughout the dark cold winter which prevail for 

more than six months every year. Energy storage could be 

a key element for Finland to harvest solar light and heat 

(warmth) during the long sunny days of summer, which can 

be used for the small energy burden of summer, and store 

the excessive for later use. In this article, we experimented 

the harvesting of incident solar irradiance on the city of 

Vaasa (Finland) using physical heat sensors buried beneath 

the earth's surface and a pyranometer device mounted on a 

building's rooftop. We proposed a simple state-space 

estimation technique using extended Kalman filter (EKF) 

and smoother (ERTS) to predict the incident solar 

irradiation on Vaasa. The results showed an unmatched 

performance for the given algorithm which yield an 

acceptable estimation accuracy for the proposed model. For 

future work, we plan to develop more advanced dynamic 

model that resembles the solar irradiance on Finland by 

considering other contributing factors including the 

extraterrestrial values and atmospheric absorption effects. 
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APPENDIX I 

MATLAB code for the nonlinear estimation of solar 

irradiance in Vaasa, Finland. 

 
clc; close all; clear variables; 

df_func = @Fx; 

dh_func = @Hx; 

phi=63.1032222;     % Univaasa latitude 

elapsed=86400;      % Elapsed time in 

seconds 

t=1:elapsed;        % Time iterations 

n=2;                % No. of states 

[delta; H] 

states=zeros(n,elapsed);    % 

Preallocation of state vector 

% Initial guesses for delta and Hour 

angle H 

x_init=[23.45*sind(211.0685-1.1416e-

05);... 

        15*((1/3600)-12)];     

Y=zeros(2,elapsed);     % 

Preallocation of measurements vector 

Yreal=zeros(1,elapsed);    % 

Preallocation states -> real 

delta=zeros(1,elapsed);         % 

Preallocation of delta vector 

HourAng=zeros(1,elapsed);       % 

Preallocation of Hour angle vector 

Yrealstates=zeros(2,elapsed);   % 

Preallocation of real state vector 

for i=1:elapsed 

    states(:,i)=[23.45*sind(211.0685-

i*1.1416e-05);... 

        15*((1/3600)*i-12)]; 

    delta(:,i)=states(1,i); 

    HourAng(:,i)=states(2,i); 

    

Yrealstates(:,i)=[delta(1,i);HourAng(

1,i)]; 

    

Yreal(:,i)=irrad(phi,delta(:,i),HourA

ng(:,i)); 

     

    

delta(:,i)=states(1,i)+gauss_rnd(1,2,

1); % gauss_rnd(mean, var, samples) 

    

HourAng(:,i)=states(2,i)+gauss_rnd(1,

5,1); 

 end 

Ymstates=[delta;HourAng];       % 

Saving measurement vector 

Ym=irrad(phi,delta,HourAng);    % 

Mapping measurements to values 

  

% Preparing for EKF algorithm 

MM = zeros(n,elapsed);    % 

Preallocation of estimates vector 

PP = zeros(n,n,elapsed);  % 

Preallocation of covariance vector 

M=x_init;                 % Initial 

state guess 
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MM=x_init; 

p1=0.1; 

p2=0.2; 

P=diag([p1 p2]);      % Initial 

covariance guess 

r=4; 

R=r*eye(n);           % Measurement 

noise covariance 

q1=0.01; 

q2=0.02; 

Q=diag([q1 q2]);      % Process noise 

covariance 

for i=2:elapsed 

% Predicition step 

M=states(:,i-1);    % States via 

nonlinear function f 

F=diag(Fx(phi,M));      % Calculating 

Jacobian F 

H=diag(Hx(phi,M));      % Calculating 

Jacobian H 

% F=eye(n);        % Reducing Jacobian 

F to Identity matrix 

% H=eye(n);        % Reducing Jacobian 

H to Identity matrix 

P=F*P*(F)'+Q;           % Predicting 

covariance 

% Update step 

v=Ymstates(:,i)-Yrealstates(:,i); 

S=H*P*(H)'+R; 

K=P*H'*inv(S); 

M=M+K*v; 

P=P-K*S*K'; 

% Saving states & covariance 

MM(:,i)   = M; 

PP(:,:,i) = P; 

end 

% Mapping estimated states to values 

estimated=zeros(1,elapsed); 

for k=1:elapsed 

    

estimated(:,k)=irrad(phi,MM(1,k),MM(2

,k)); 

end  

% Plotting results 

figure; 

plot(duration(0,0,t),Yreal, 

duration(0,0,t),Ym,'+',... 

    

duration(0,0,t),estimated,'linewidth'

,1,'markersize',1) 

grid on;  

legend('Ideal values','Measurements', 

'EKF estimated') 

xlabel('Time of day') 

ylabel('Solar Irradiance [W/m^2]') 

title('EKF estimation of solar 

irradiance in Vaasa') 

figure; 

plot(duration(0,0,t),Yreal, 

duration(0,0,t),estimated) 

grid on;  

legend('Real values','EKF estimated') 

 

% Computing Mean square error of 

estimates 

MSE = sum((estimated-

Yreal).^2)/elapsed; 

fprintf('EKF-MSE = 

%.4f\n',sqrt(MSE));   % Result shown 

in Watts/m^2 

  

% Function declaration 

% Irradiance function(phi,delta,Hour 

Angle) 

function I=irrad(phi,delta,HourAng) 

I=1000.*(sind(phi).*cosd(delta)+cosd(

phi).*cosd(delta).*cosd(HourAng)); 

end 

% Jacboian of nonlinear F equation 

function dI = Fx(phi,M) 

phi=phi; 

delta = M(1,:); 

HourAng = M(2,:); 

dI = [1000*(-sind(phi)*sind(delta)-

cosd(phi)*sind(delta)*cosd(HourAng)),

... 

    1000*(0-

cosd(phi)*cosd(delta)*sind(HourAng))]

; 

end 

% Jacboian of nonlinear H equation 

% Assuming same function for F & H 

function dI = Hx(phi,M) 

phi=phi; 

delta = M(1,:); 

HourAng = M(2,:); 

dI = [1000*(-sind(phi)*sind(delta)-

cosd(phi)*sind(delta)*cosd(HourAng)),

... 

    1000*(0-

cosd(phi)*cosd(delta)*sind(HourAng))]

; 

end 
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