
Journal of Technology Research (JTR)  
Volume 3, Issue 2, (2025), pp 120-125, ISSN 3005-639X 

Neural Network-Based Optimal Control for Glucose Regulation 

in a Simplified Diabetic Model 

Eshag Larbah 1 , Abdalla A. Elmasallati 2*  
1 Department of Electromechanical Engineering, College of Industrial Technology, Misrata, Libya. 
2 Department of Electronic Engineering, Information Technology Division, College of Industrial Technology, 
Misrata, Libya. 
*Corresponding author email: abdallah.emasallati@cit.edu.ly.

Received: 12-10-2025 | Accepted: 08-12-2025 | Available online: 15-12-2025 | DOI:10.26629/jtr.2025.14 

ABSTRACT 

This paper investigates the application of neural networks for approximating optimal control strategies in 
regulating blood glucose levels in a simplified model of glucose-insulin dynamics. A linear model of glucose-
insulin interaction is used, and an optimal control problem is formulated to minimize deviations from a target 
glucose level while penalizing excessive insulin infusion. Training data for the neural network is generated by 
numerically solving the optimal control problem. A feedforward neural network is trained on this data to 
approximate the optimal control policy. The performance of the neural network controller is evaluated through 
simulation and compared against the directly calculated optimal control, demonstrating the potential of neural 
networks for personalized glucose regulation. The limitations of this simplified approach and directions for future 
research are also discussed. 
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التحكم الأمثل القائم على الشبكات العصبية لتنظيم الجلوكوز في نموذج مبسط  
لمرض السكري 

تي ، عبدالله 1الأرباح إسحاق  2المسلّا

 . قسم الهندسة الكهروميكانيكية، كلية التقنية الصناعية، ، مصراتة، ليبيا 1
 . قسم الهندسة الإلكترونية )شعبة تقنية معلومات(، كلية التقنية الصناعية، ، مصراتة، ليبيا 2

ملخــــــــــــــــص البحــــــــــــــــــث 

تستقصي هذه الورقة تطبيق الشبكات العصبية لتقريب استراتيجيات التحكم الأمثل في تنظيم مستويات جلوكوز الدم ضمن نموذج مبسط  
الأنسولين. تم استخدام نموذج خطي للتفاعل بين الجلوكوز والأنسولين، وتمت صياغة مشكلة تحكم أمثل لتقليل  -لديناميكيات الجلوكوز 

الجلوكوز المستهدف مع فرض عقوبة على الإفراط في ضخ الأنسولين. يتم توليد بيانات تدريب الشبكة العصبية   الانحرافات عن مستوى 
عن طريق الحل العددي لمشكلة التحكم الأمثل. تم تدريب شبكة عصبية أمامية بناءً على هذه البيانات لتقريب سياسة التحكم الأمثل. تم  

كة العصبية من خلّل المحاكاة ومقارنته بالتحكم الأمثل المحسوب مباشرةً، مما يدل على إمكانات  تقييم أداء المتحكم القائم على الشب
الشبكات العصبية في تنظيم الجلوكوز الشخصي والتكيفي. كما نوقشت قيود هذا النهج المبسط واتجاهات الأبحاث المستقبلية. 

 . السكري  حكم األمثل، تنظيم الجلوكوز، مرض( ، التNNالشبكات العصبي ) الكلمات الدالة:
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1. INTRODUCTION

Diabetes mellitus is a chronic metabolic 
disorder characterized by elevated blood 
glucose levels (hyperglycaemia), affecting 
millions worldwide [1]. Effective management 
of diabetes is crucial to prevent long-term 
complications such as cardiovascular disease, 
neuropathy, retinopathy, and nephropathy [2]. 
These complications impose a significant 
burden on healthcare systems and reduce 
patients' quality of life. Continuous glucose 
monitoring (CGM) and insulin pumps offer the 
potential for automated insulin delivery 
systems, often referred to as "artificial 
pancreas" or closed-loop systems [3]. These 
systems aim to mimic the function of a healthy 
pancreas by automatically adjusting insulin 
delivery based on real-time glucose 
measurements. This paper explores the use of 
neural networks to approximate optimal control 
strategies for glucose regulation. Optimal 
control theory provides a rigorous mathematical 
framework for determining the best control 
actions to achieve a desired objective, such as 
maintaining glucose levels within a narrow 
physiological range [4]. However, solving 
optimal control problems can be 
computationally intensive, especially for 
complex systems with nonlinear dynamics, time 
delays, and constraints. Neural networks offer a 
promising alternative by learning to 
approximate the optimal control policy from 
data [5]. This approach has the potential to 
enable personalized and adaptive glucose 
control strategies, adapting to individual patient 
characteristics, meal intake, exercise, and other 
factors that influence glucose levels. 

2. MATHEMATICAL MODEL AND

CONTROL METHOD:

To generate training data that accurately 
represents the optimal control policy for the 
neural network, the optimal control problem 
was numerically solved based on the glucose-
insulin dynamic model. 

2.1 System Model 

A simplified linear model of glucose-insulin 
dynamics is used [6, 7]: 

𝑑𝐺

𝑑𝑡
= −𝑝1𝐺(𝑡) − 𝑝2𝐼(𝑡) +  𝑢(𝑡) +  𝐷(𝑡)      (1)

𝑑𝐼

𝑑𝑡
= −𝑝3𝐼(𝑡) −  𝑝4𝐺(𝑡)  (2) 

Where 𝐺(𝑡) is blood glucose concentration 
(mg/dL) , 𝐼(𝑡) is blood insulin concentration 
(mU/L) , 𝑢(𝑡) is Insulin infusion rate (mU/min) 
, 𝐷(𝑡) is meal disturbance representing glucose 
absorption from a meal (mg/dL/min) and 𝑝1 , 𝑝2 
, 𝑝3 , 𝑝4 are patient-specific parameters (set to 
0.1, 0.2, 0.3, and 0.05, respectively). These 
parameters represent glucose disappearance 
rate, insulin-dependent glucose uptake, insulin 
disappearance rate, and insulin secretion rate 
proportional to glucose, respectively. 

2.2 Optimal Control Problem 

Objective: To maintain blood glucose levels 
close to the target level (G target) by adjusting 
the insulin infusion rate 𝑢(𝑡). 
Cost Function: A quadratic cost function is 
formulated to minimize deviations from the 
target glucose level and penalize excessive 
insulin infusion7. The objective is to minimize 
the following cost function over a finite time 
horizon (Topt) 

𝐽 = ∫ [𝑄(𝐺(𝑡) − 𝐺𝑡𝑎𝑟𝑔𝑒𝑡)2 + 𝑅𝑢(𝑡)2]
𝑇𝑜𝑝𝑡

0

𝑑𝑡   (3) 

Where Gtarget is the target glucose level, set to 
100 mg/dL. The weighting factors Q and R were 
set as follows: 

• Q (q1): Weighting factor for glucose
error, set to 100. (This value was
selected to ensure strong and rapid
correction of glucose deviation) 10.

• R (q2): Weighting factor for insulin
infusion rate, set to 0.01.
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For numerical solution, the continuous integral 
was approximated by a discrete sum over the 
time steps dt. 

2.3 Neural Network Controller 

A feedforward neural network with a single 
input (current glucose level G(t)) and a single 
output (optimal insulin infusion rate u(t)) was 
used. The network architecture consists of a 
hidden layer with 10 neurons, trained using 
MATLAB’s train function [8, 9,10]. 

2.4 Training Data Generation 

Training data is generated by numerically 
solving the optimal control problem using 
MATLAB's fmincon function ( MATLAB 
2014) , a nonlinear optimization solver [11]. For 
a range of initial glucose levels (𝐺0, ranging 
from 50 to 200 mg/dL in increments of 5), 
fmincon is used to find the optimal control input 
u that minimizes the cost function over a finite
time horizon (𝑇𝑜𝑝𝑡  = 20 minutes with 𝑑𝑡 = 1

minute). The initial glucose levels and the
corresponding optimal insulin infusion rates at
the first-time step are used as input-target pairs
for training. This approach uses the first control
action of the optimal trajectory as the target,
simplifying the training process while still
capturing the essence of the optimal control
policy.

2.5 Simulation 

The performance of the trained neural network 
controller is evaluated through simulation over 
a time horizon of 50 minutes. A meal 
disturbance (𝐷 = 50 mg/dL/min for 5 minutes) 
is introduced at 𝑡 = 10 minutes to simulate a 
postprandial glucose rise. The glucose and 
insulin trajectories under the neural network 
control are compared with those obtained using 
the directly calculated optimal control at each 
time step. The simulation uses a discrete-time 
approximation of the continuous-time system 
model. 

3. RESULTS

Figure (1) illustrates the glucose response to the 
simulated meal disturbance and the 
performance of both the neural network (NN) 
and optimal controllers. Before the meal at 𝑡 =

 10 minutes, both controllers maintain glucose 
levels close to the target of 100 mg/dL. The 
meal disturbance causes a rapid increase in 
glucose concentration. The optimal controller 
reacts quickly with a sharp increase in insulin 
infusion Figure (2), limiting the peak glucose 
excursion to approximately 115 mg/dL at 𝑡 =

 12 minutes. The neural network controller also 
increases insulin delivery, but with a slightly 
less aggressive initial bolus, resulting in a 
slightly higher peak glucose level of 120 mg/dL 
at 𝑡 =  13 minutes. This represents a difference 
of approximately 4.3% in the peak glucose 
excursion between the two controllers. After the 
peak, both controllers effectively bring the 
glucose level back to the target range within 
approximately 10 − 15 minutes. The meal 
disturbance 𝐷 is also shown, having a duration 
of 5 minutes. 

Figure (2) depicts the insulin infusion rates 
delivered by both controllers. The optimal 
controller exhibits a more pronounced initial 
bolus in response to the meal, reaching a peak 
of approximately 8 mU/min, followed by a 
rapid decrease. The neural network controller's 
insulin profile is smoother, with a less 
pronounced peak of approximately 6 mU/min 
and a more gradual decline. 

Figure (3) presents two distinct, fast-acting 
bolus profiles that start at the same time. While 
the Optimal Controller delivering a sharp pulse 
around 8 minutes, and the NN Controller 
delivering a smoother pulse that peaks slightly 
later. 

Figure (4) shows the training data used to train 
the neural network. It depicts the learned 
relationship between the initial glucose levels 
and the corresponding optimal insulin infusion 
rates at the first-time step. The data exhibits a 
clear trend: higher initial glucose levels 
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correspond to higher initial insulin boluses, as 
expected. 

4. Discussion

The results demonstrate the feasibility of using 
neural networks to approximate optimal control 
strategies for glucose regulation in a simplified 
model. The neural network controller achieves 

performance reasonably comparable to the 
directly calculated optimal control, suggesting 
that this approach could be effective for 
personalized glucose management. The small 
differences observed between the NN and the 
optimal controller, particularly in the peak 
glucose excursion and the initial insulin bolus, 
are likely due to several factors: 

Fig 1.  Glucose levels over time for both the neural network controller and the optimal controller, along with the 
target glucose level and the meal disturbance. 

Fig 2. Insulin infusion rates over time for both controllers. 

● Simplified NN Architecture: The use
of a single hidden layer feedforward
network with only 5 neurons limits the
network's capacity to perfectly capture

the complex nonlinear relationship 
between glucose, insulin, and control 
actions. 

● Training Data: Training the NN solely
on the first control action of the optimal
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trajectory simplifies the training 
process but may not fully capture the 
dynamic nature of the optimal control 
policy over the entire time horizon. 

● Linear Model Limitations: The linear
model used in this study is a
simplification of the complex

physiological processes involved in 
glucose-insulin regulation. Nonlinear 
models, such as the Bergman minimal 
model [7], are known to better represent 
the actual physiological dynamics, 
including saturation effects and time 
delays.

Fig 3.  Insulin levels over time for both controllers. 

Fig 4. Training data used for the neural network. 

Despite these limitations, the NN controller 
demonstrates a promising ability to 
approximate the optimal control strategy. The 
inclusion of the meal disturbance in the 
simulation provides a more realistic test case 
and highlights the controller's ability to respond 
to rapid changes in glucose levels. The 
comparison of insulin levels as in Figure (3) 

provides further insight into the system's 
dynamics and the controllers' behaviour. 

5. CONCLUSION

This study presents a preliminary investigation 
into the use of neural networks for optimal 
glucose control. The results suggest that neural 
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networks can effectively learn to approximate 
optimal control policies for glucose regulation 
in a simplified setting. Moving forward, future 
work will focus on addressing the limitations of 
this study by using more complex nonlinear 
models, such as the well-established Bergman 
Minimal Model, which provides a more detailed 
representation of glucose-insulin dynamics. 

Furthermore, to effectively capture the time-
dependent nature of glucose regulation, more 
advanced architectures like Recurrent Neural 
Networks (RNNs) and LSTMs will be utilized, 
as they are designed to process sequential data 
and remember information over longer periods. 
The research will also explore Reinforcement 
Learning techniques to eliminate the need for 
pre-calculated optimal control data by enabling 
the neural network to learn through interaction 
and receive real-time feedback, thus supporting 
online adaptation to individual patients. Finally, 
to handle model uncertainties and disturbances 
more effectively, robust control techniques such 
as H-infinity control or Model Predictive 
Control (MPC) with robustness considerations 
will be incorporated, ensuring the system 
remains stable and effective in the presence of 
unpredictable factors. 
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