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ABSTRACT

This paper investigates the application of neural networks for approximating optimal control strategies in
regulating blood glucose levels in a simplified model of glucose-insulin dynamics. A linear model of glucose-
insulin interaction is used, and an optimal control problem is formulated to minimize deviations from a target
glucose level while penalizing excessive insulin infusion. Training data for the neural network is generated by
numerically solving the optimal control problem. A feedforward neural network is trained on this data to
approximate the optimal control policy. The performance of the neural network controller is evaluated through
simulation and compared against the directly calculated optimal control, demonstrating the potential of neural
networks for personalized glucose regulation. The limitations of this simplified approach and directions for future
research are also discussed.
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1. INTRODUCTION

Diabetes mellitus is a chronic metabolic
disorder characterized by elevated blood
glucose levels (hyperglycaemia), affecting
millions worldwide [1]. Effective management
of diabetes is crucial to prevent long-term
complications such as cardiovascular disease,
neuropathy, retinopathy, and nephropathy [2].
These complications impose a significant
burden on healthcare systems and reduce
patients' quality of life. Continuous glucose
monitoring (CGM) and insulin pumps offer the
potential for automated insulin delivery
systems, often referred to as "artificial
pancreas" or closed-loop systems [3]. These
systems aim to mimic the function of a healthy
pancreas by automatically adjusting insulin
delivery based on real-time glucose
measurements. This paper explores the use of
neural networks to approximate optimal control
strategies for glucose regulation. Optimal
control theory provides a rigorous mathematical
framework for determining the best control
actions to achieve a desired objective, such as
maintaining glucose levels within a narrow
physiological range [4]. However, solving
optimal control ~ problems can be
computationally intensive, especially for
complex systems with nonlinear dynamics, time
delays, and constraints. Neural networks offer a
promising  alternative by learning to
approximate the optimal control policy from
data [5]. This approach has the potential to
enable personalized and adaptive glucose
control strategies, adapting to individual patient
characteristics, meal intake, exercise, and other
factors that influence glucose levels.

2. MATHEMATICAL MODEL AND
CONTROL METHOD:

To generate training data that accurately
represents the optimal control policy for the
neural network, the optimal control problem
was numerically solved based on the glucose-
insulin dynamic model.

2.1 System Model

A simplified linear model of glucose-insulin
dynamics is used [6, 7]:
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Where G(t) is blood glucose concentration
(mg/dL) , I(t) is blood insulin concentration
(mU/L) , u(t) is Insulin infusion rate (mU/min)
, D(t) is meal disturbance representing glucose
absorption from a meal (mg/dL/min) and p; , p,
, P3 , P4 are patient-specific parameters (set to
0.1, 0.2, 0.3, and 0.05, respectively). These
parameters represent glucose disappearance
rate, insulin-dependent glucose uptake, insulin
disappearance rate, and insulin secretion rate
proportional to glucose, respectively.

2.2 Optimal Control Problem

Objective: To maintain blood glucose levels
close to the target level (G target) by adjusting
the insulin infusion rate u(t).

Cost Function: A quadratic cost function is
formulated to minimize deviations from the
target glucose level and penalize excessive
insulin infusion7. The objective is to minimize
the following cost function over a finite time
horizon (Top)

Topt
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Where G is the target glucose level, set to
100 mg/dL. The weighting factors Q and R were
set as follows:

e O (ql): Weighting factor for glucose
error, set to 100. (This value was
selected to ensure strong and rapid
correction of glucose deviation) 10.

e R (q2): Weighting factor for insulin
infusion rate, set to 0.01.
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For numerical solution, the continuous integral
was approximated by a discrete sum over the
time steps dr.

2.3 Neural Network Controller

A feedforward neural network with a single
input (current glucose level G(?)) and a single
output (optimal insulin infusion rate u(z)) was
used. The network architecture consists of a
hidden layer with 10 neurons, trained using
MATLAB?’s train function [8, 9,10].

2.4 Training Data Generation

Training data is generated by numerically
solving the optimal control problem using
MATLAB's fmincon function ( MATLAB
2014) , anonlinear optimization solver [11]. For
a range of initial glucose levels (G, ranging
from 50 to 200 mg/dL in increments of 5),
fmincon is used to find the optimal control input
u that minimizes the cost function over a finite
time horizon (T,p: = 20 minutes with dt =1
minute). The initial glucose levels and the
corresponding optimal insulin infusion rates at
the first-time step are used as input-target pairs
for training. This approach uses the first control
action of the optimal trajectory as the target,
simplifying the training process while still
capturing the essence of the optimal control
policy.

2.5 Simulation

The performance of the trained neural network
controller is evaluated through simulation over
a time horizon of 50 minutes. A meal
disturbance (D = 50 mg/dL/min for 5 minutes)
is introduced at ¢ = 10 minutes to simulate a
postprandial glucose rise. The glucose and
insulin trajectories under the neural network
control are compared with those obtained using
the directly calculated optimal control at each
time step. The simulation uses a discrete-time
approximation of the continuous-time system
model.

3. RESULTS

Figure (1) illustrates the glucose response to the
simulated meal disturbance and the
performance of both the neural network (NN)
and optimal controllers. Before the meal att =
10 minutes, both controllers maintain glucose
levels close to the target of 100 mg/dL. The
meal disturbance causes a rapid increase in
glucose concentration. The optimal controller
reacts quickly with a sharp increase in insulin
infusion Figure (2), limiting the peak glucose
excursion to approximately 115 mg/dL att =
12 minutes. The neural network controller also
increases insulin delivery, but with a slightly
less aggressive initial bolus, resulting in a
slightly higher peak glucose level of 120 mg/dL
att = 13 minutes. This represents a difference
of approximately 4.3% in the peak glucose
excursion between the two controllers. After the
peak, both controllers effectively bring the
glucose level back to the target range within
approximately 10 — 15 minutes. The meal
disturbance D is also shown, having a duration
of 5 minutes.

Figure (2) depicts the insulin infusion rates
delivered by both controllers. The optimal
controller exhibits a more pronounced initial
bolus in response to the meal, reaching a peak
of approximately 8 mU/min, followed by a
rapid decrease. The neural network controller's
insulin profile is smoother, with a less
pronounced peak of approximately 6 mU/min
and a more gradual decline.

Figure (3) presents two distinct, fast-acting
bolus profiles that start at the same time. While
the Optimal Controller delivering a sharp pulse
around 8 minutes, and the NN Controller
delivering a smoother pulse that peaks slightly
later.

Figure (4) shows the training data used to train
the neural network. It depicts the learned
relationship between the initial glucose levels
and the corresponding optimal insulin infusion
rates at the first-time step. The data exhibits a
clear trend: higher initial glucose levels
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correspond to higher initial insulin boluses, as
expected.

4. Discussion

The results demonstrate the feasibility of using
neural networks to approximate optimal control
strategies for glucose regulation in a simplified
model. The neural network controller achieves

performance reasonably comparable to the
directly calculated optimal control, suggesting
that this approach could be effective for
personalized glucose management. The small
differences observed between the NN and the
optimal controller, particularly in the peak
glucose excursion and the initial insulin bolus,
are likely due to several factors:

Figure 1: Glucose Levels (NN vs, Optimal) Under Meal Disturhance

Glucose (mg/dL)

I

T T

= Glucose Level (NN)
===Glucose Level (Optimal)
»Target Glucose Level

[ Meal Disturbance

Fig 1. Glucose levels over time for both the neural network controller and the optimal controller,

target glucose level and the meal disturbance.

|
%

Time (min)

along with the

Figure 2: Insulin Infusion Rates (NN vs. Optimal)

T [

Insulin Infusion Rate (mU/min)

= Insulin Infusion Rate (NN) ||
===Insulin Infusion Rate (Optimal)

%5
Time {min)

Fig 2. Insulin infusion rates over time for both controllers.

e Simplified NN Architecture: The use
of a single hidden layer feedforward
network with only 5 neurons limits the
network's capacity to perfectly capture

the complex nonlinear relationship
between glucose, insulin, and control
actions.

e Training Data: Training the NN solely
on the first control action of the optimal
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trajectory  simplifies the training
process but may not fully capture the
dynamic nature of the optimal control

policy over the entire time horizon.

Linear Model Limitations: The linear
model wused in this
of

study is

the

a

simplification complex

physiological processes involved in
glucose-insulin regulation. Nonlinear
models, such as the Bergman minimal
model [7], are known to better represent
the actual physiological dynamics,
including saturation effects and time
delays.

Figure 3: Insulin Levels in Blood (NN vs. Optimal)

k3
I

S )
I I

Insulin Level (mU/L)
=
T

T I T I
= Insulin Level (NN)
===Insulin Level (Optimal)

| | I |

Fig 3. Insulin levels over time for both controllers.
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Figure 4: Training Data (Glucose vs. Optimal Conirol Action)
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Fig 4. Training data used for the neural network.

Despite these limitations, the NN controller

demonstrates a  promising ability to
approximate the optimal control strategy. The
inclusion of the meal disturbance in the
simulation provides a more realistic test case
and highlights the controller's ability to respond
to rapid changes in glucose levels. The

comparison of insulin levels as in Figure (3)

150 n

Glucose (mg/dL)

provides further insight into the system's
dynamics and the controllers' behaviour.

5. CONCLUSION

This study presents a preliminary investigation
into the use of neural networks for optimal
glucose control. The results suggest that neural
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networks can effectively learn to approximate
optimal control policies for glucose regulation
in a simplified setting. Moving forward, future
work will focus on addressing the limitations of
this study by using more complex nonlinear
models, such as the well-established Bergman
Minimal Model, which provides a more detailed
representation of glucose-insulin dynamics.

Furthermore, to effectively capture the time-
dependent nature of glucose regulation, more
advanced architectures like Recurrent Neural
Networks (RNNs) and LSTMs will be utilized,
as they are designed to process sequential data
and remember information over longer periods.
The research will also explore Reinforcement
Learning techniques to eliminate the need for
pre-calculated optimal control data by enabling
the neural network to learn through interaction
and receive real-time feedback, thus supporting
online adaptation to individual patients. Finally,
to handle model uncertainties and disturbances
more effectively, robust control techniques such
as H-infinity control or Model Predictive
Control (MPC) with robustness considerations
will be incorporated, ensuring the system
remains stable and effective in the presence of
unpredictable factors.
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