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ABSTRACT

This study focuses on the prediction of hydrogen sulphide removal efficiency in natural gas sweetening
processes using Artificial Neural Networks (ANN). The developed model was trained on experimental
solubility data that were extracted from literature for 17 different absorbents at various operating
conditions, with a total of 470 data points. Three training algorithms of Scaled Conjugate Gradient
(SCQ), Levenberg Marquardt (LM), and Bayesian Regularization (BR) were evaluated to determine the
optimal ANN architecture. The performance of each model was assessed using mean squared error
(MSE) and the coefficient of determination (R?). The SCG algorithm achieved its best performance at
35 hidden neurons, with MSE = 0.0183 and R? = 0.8799, showing gradual improvements but lower
accuracy compared to other methods. The LM algorithm performed optimally at 15 hidden neurons,
yielding MSE = 0.002865 and R? = 0.9785, demonstrating excellent predictive accuracy. The BR
algorithm outperformed both SCG and LM, with the best results at 25 hidden neurons, achieving MSE
=(.001465 and R? = 0.9904, indicating superior generalization and stability. These results highlight the
potential of ANN as a robust tool for simulating gas sweetening processes and supporting industrial
decision-making.
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1. INTRODUCTION

The removal of hydrogen sulphide (H,S) from
natural gas is a critical step in gas purification
due to the compound's toxicity, corrosiveness,
and environmental impact. Depending on gas
composition, pressure, and H,S concentration,
different industrial processes are used to ensure
effective removal. The most common processes
include; amine gas treating (gas sweetening),
claus process, iron sponge process, adsorption
process, membrane separation, and biological
desulfurization [1,2]. However, among the
various methods available for H,S removal,
amine gas sweetening (shown in Figure 1) is
one of the most widely applied and effective
technologies in the natural gas industry [3]. The
figure shows that sour feed gas is fed into the
amine unit. The aqueous amine solution enters
at the top of the amine absorber unit, and the
sour gas is then fed into the bottom, flowing
counter-currently while in contact with it. The
amine solution that absorbed the acid gas
emerged from the bottom of the absorber as the
rich amine. Sweet gas that has been treated
leaves at the absorber’s top. Therefore, it can be
postulated that amines remove H>S in a two-
step process, where the gas dissolves in the
liquid (physical absorption) and then the
dissolved gas dissociates into a weak ionic acid,
reacts with the weakly basic amines [4]. Several
types of amines have been studied such as
monoethanolamine (MEA), diethanolamine
(DEA), methyldiethanolamine (MDEA), and
sterically hindered amines like 2-amino-2-
methyl-1-propanol (AMP) and tert-butyl
ethanolamine (TBEE) [4]. These solvents react
reversibly with acidic gases, which make them

widely used in gas sweetening units. For
example, MDEA is characterized by different
reaction rates of H,S and of carbon dioxide
(CO;) in the solution; those of H,S are
instantaneous, while those of CO, are finite and
slow with respect to the mass transfer rate [5].
This difference in the reaction rate makes the
MDEA absorption system kinetically selective
towards H,S, so it is used for purification of
several gaseous streams, in particular when both
the two acid gases are present [4].

Acid gas
Condenser (H2S and CO3)

Sweet gas

Makeup
water Lean

amine Rich amine,

Absorber

Reflux
drum

Reflux

Pump
Regenerator

Steam

Sourgas |

Reboiler

Condensate

Fig 1. Typical process flow diagram of an amine -
treating unit for H,S removal [6].

Inspired by the human brain, Artificial Neural
Networks (ANNSs) are advanced computational
models designed to detect complex patterns in
data. Their key strengths, compared to
traditional models, are their ability to model
non-linear relationships and handle noisy data,
making them powerful tools for difficult
engineering problems and universal function
approximators [7]. The ANN's structure
consisting of input, hidden, and output layers of
interconnected neurons that are capable of
processes information through activation
functions, enabling it to learn sophisticated

J Technol Res. 2025;3:770-779.

https://jtr.cit.edu.ly



772

Bagar et al

mappings between inputs and outputs for tasks
like prediction and classification [8].

Several studies have demonstrated the
effectiveness  of  artificial  intelligence
specifically neural network models in
predicting the solubility and concentration of
H,S during gas sweetening processes [9,10].
Nimmanterdwong et al. [11] developed an
ANN model to predict H,S solubility in various
absorbents, including amines, ionic liquids, and
hybrid mixtures. The study found that
Levenberg—Marquardt achieved the Dbest
performance (MSE = 0.0014, R?> = 0.9817).
Hakimi et al. [6] applied ANN to predict H,S
concentration in sweet gas exiting an Acid Gas
Removal Unit (AGRU). The model used input
variables such as MDEA and Piperazine
concentrations, temperature, and pressure. The
study showed that the best-performing ANN
trained via Levenberg—Marquardt technique
achieved (R?=0.966, MAE = 0.066, and RMSE
= (.122). Shafiei et al. [12] investigated H,S
solubility in ionic liquids using machine
learning  techniques.  Additionally, the
compared traditional backpropagation ANN
(BP-ANN) with particle swarm optimization-
trained ANN (PSO-ANN) yielding R? = 0.9515
and MSE = 0.00335 for BP-ANN, while PSO-
ANN achieved significantly better performance
with R? = 0.9922 and MSE = 0.00025.
Therefore, it is clear that ANN provide a
promising solution, as they can capture hidden
patterns in the data and predict system behavior
accurately and efficiently.

Therefore, selecting the optimal model is
challenging due to the availability of several
training algorithms and network configurations.
This necessitates a thorough performance
evaluation to identify the best model for a
specific application.

In this study, three training algorithms (SCG,
LM, and BR) were tested to evaluate their
performance in predicting the behavior of the
H,S removal unit. Furthermore, the results
based on performance metrics such as MSE and
R? were compared to identify the most accurate
and reliable model [13]. Then the best model
was selected for a comprehensive analysis of its
performance using illustrative MATLAB plots.

2. MATERIALS AND METHODS

MATLAB, a popular tool for data analysis and
algorithm development, was used in this project
to create an ANN model for predicting H,S
solubility in various absorbents. The model is
based on the experimental solubility data of H,S
in various absorbents. The developed model
was trained on experimental solubility data that
were extracted from published literature [ 14-19]
for 17 different absorbents at various operating
conditions, in a total of 470 data points as
depicted in Appendix A. . The absorbents
include amines, ionic liquids, physical organic
solvents, and hybrid absorbents (such as amine,
physical solvent and amine, and ionic liquid),
providing a diverse and comprehensive dataset
suitable for training the ANN model.

In this study, the solubility of H,S was
considered as the output, while the absorbents
and their weight fractions as well as operating
temperature (K) and pressure (kPa) were
considered as inputs as depicted in Figure 2. In
case of a pure absorbent, unity weight fraction
was the input as the absorbent concentration.
For a blended absorbent, the weight fraction of
each absorbent and its corresponding absorbent
codename were chosen as the input into the
ANN model. The total of 470 data points was
split into three sets with 70% for training, and
the remaining 30% was divided equally into
validation and testing sets with each
representing 15% of the total data.
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Fig 2. The configured artificial neural network with
multiple layers.

3. THEORY AND CALCULATION
3.1. Mathematical expressions

Due to the slightly disparate scales of the
different variables in the dataset, a min-max
normalization approach was applied to the
training data to bring all features to the same
scale.

$ = _XXmin 1)
Xmax —Xmin

where:

X is the normalized value.

x is the original input value.

Xmin 1S the minimum value.

Xmax 18 the maximum value.

The Neural Networks Toolbox in MATLAB
with Neural Fitting Application was applied
for designing the ANN model.

The model employs the backpropogation (BP)
framework within the multilayer, feedforward
(FF) architecture, a powerful pattern that
enables the network to adapt by minimizing
error through gradient decent. The equation that
expresses the weight update process during
training is given by:

Wije+1) = Wijey + N8x; ()

Where:

w;; is the weight between neuron i and neuron j
6; is the error term for neuron j

xi is the input from neuron i

7 is the learning rate

The FF structure, typically comprising hidden
layers of sigmoid neurons and a linear output
layer, is capable of modeling complex linear
and nonlinear relationships. As no single BP
based algorithm is optimal, the performance are
highly dependent on the specific problem and
data. Therefore, the strategy of this research is
to evaluate three distinct and efficient
algorithm: Levenberg-Marquardt (TRAINLM),
as of its rapid convergence; Scaled Conjugate
Gradient (TRAINSCQ), as of its robustness and
lack of line search parameters; and Bayesian
Regularization (TRAINBR), as of its ability to
improve generalization and prevent overfitting.
The performance of these algorithms will be
compared using MSE and R? to identify the
most effective training strategy for the H,S
solubility prediction.

3.2. Training the neural network

A range of hidden neuron counts, from 1 to 35,
is tested in order to determine the optimal
network architecture. After constructing the
neural network, the input data are fed into the
network along with the desired outputs. The
network adapts to the data through a process
known as training, using specific training
algorithms. These algorithms determine the
modelling, learning, and validation properties
of the network.

In this study, the activation function employed
in the hidden layer is the hyperbolic tangent
sigmoid transfer function (tansig), which is a
widely used activation function for hidden
layers in neural networks, is given by:

fl) =———1 3)

1+e~2%

3.3. Model evaluation

To evaluate a prediction performance of the
developed ANN models, an error analysis
through the MSE and R? was conducted. Figure
3 summarizes the steps applied for evaluation.
These two parameters are typically used for
indicating an error between the actual and
predicted values (in this case, the experimental
and the predicted solubility of H,S). Equations
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used for calculations of the two predictive
indicators (MSE and R?) are given by equations

(4) and (5), respectively [13]. MSE =

z:?=1(‘7‘exp in_ Apred i)z (4)

Rz =1— <Z?=1(apredi_aexp l)j) (5)
S (@exp i=aap )

Where:

n is the number of data points.

Qexpi 18 experimental solubility of HS.

Apreq i 18 predicted solubility of H,S.

Qexp 18 average experimental solubility of H,S.

Define input parameters and
output parameter

Data analysis and pre- processing
(normalization)

Select parameters for training of the ANN:

Ne of neurons in hidden layer Training, validation and test for 1% set

Transfer function of data collection from the field

- Training function

Optimal goal reached
(acceptable H25
+

Network is ready for
performance prediction

Fig 3. Flowchart summarizing the steps applied.

Additionally, instead of individually comparing
the predicted and experimental data in a
tabulation format, the parity chart positions
predicted solubility of H,S with its
corresponding experimental value in a graphical
format. Along the diagonal line, where the
predicted value equals to the experimental
value, each coordination of the predicted and
experimental values is located accordingly. For
a promising ANN model, the data distribution
should be closely along the diagonal line.

4. RESULTS AND DISCUSSION

4.1. Performance of the selected ANN model

The evaluation metrics were calculated for the
training, validation, and testing datasets for the
LM-ANN and SCG-ANN models. However,
the BR-ANN model utilized only training and
testing datasets. This is attributed to the
fundamental difference in the BR training
algorithm. Unlike LM and SCG, which uses a
separate validation set for early stopping to
prevent overfitting, BR uses a probabilistic
framework that intrinsically penalizes model
complexity. This is achieved by minimizing an
objective function that balances data error with
a regularization term based on the magnitude of
the network weights [11,20,21].

As a result, three predictive models of LM-
ANN, BR-ANN, and SCG-ANN were
constructed. To justify the effectiveness of the
developed models, the MSE and R2? were
applied as depicted in Figures 4 and 5,
respectively.

The results for the SCG algorithm show a
gradual improvement in both the MSE and R?
with an increasing number of neurons, reaching
the best performance on the testing set at 35
hidden neurons, where MSE(test) = 0.018344
and R?(test) = 0.8799. For example, a consistent
improvement in performance across the
training, validation, and testing sets,
particularly beyond 20 neurons, where MSE
values drop noticeably and R? steadily
approaches 0.80-0.88. The gap between
training, validation, and testing performance
remains relatively small, suggesting good
generalization capability. It is also notable that
this small performance gap persists at higher
neuron counts, indicating that the model does
not exhibit strong overfitting at 35 neurons; all
datasets show relatively similar behavior.
However, the relatively higher MSE on the
testing set compared to some other algorithms
indicates that SCG may not provide the highest
possible prediction accuracy, but it achieves a
reasonable balance between complexity and
training stability.
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The figures also show the performance of the
LM algorithm which shows a rapid
improvement in accuracy as the number of
hidden layer neurons increases, with a
substantial drop in the MSE occurring between
5 and 10 neurons. The optimal configuration
was achieved with 15 hidden neurons, resulting
in MSE(test) = 0.002865 and R?(test) = 0.9785,
indicating excellent predictive capability. Up to
around 30 neurons, both MSE and R? remain
stable and consistently high in performance,
with low error and R? values close to 1.0 across
training, validation, and testing sets. However,
after exceeding 30 hidden neurons, there is a
noticeable increase in MSE and a slight drop in
R2?, especially in the validation and testing
datasets. This behavior suggests that the model
begins to lose generalization capacity, possibly
due to overfitting caused by excessive network
complexity. The gap between the training and
testing curves remains relatively small in the
optimal range (around 15 neurons), indicating
stable learning and minimal overfitting. The R?
value of approximately 0.98 in the optimal
configuration means the model explains about
98% of the variance in the target variable on
unseen data as an excellent result.

The figures also show the performance of the
BR algorithm which demonstrates rapid and
consistent performance improvement as the
number of hidden neurons increases, with a
sharp decline in MSE and a steady rise in the R2.
The optimal configuration was achieved with 25
hidden neurons, yielding an MSE(test) =
0.001465 and R?*(test) = 0.9904, indicating
excellent predictive accuracy and minimal
generalization error. Compared to SCG and
LM, BR achieves high accuracy with fewer
neurons while maintaining exceptional stability
across both training and testing datasets.
Notably, after around 10 neurons, the
performance curves flatten, with only marginal
gains observed beyond this point. The minimal
gap between training and testing results
suggests strong resistance to overfitting. While
BR maintains superior stability, slight

fluctuations in MSE are observed when
increasing the hidden neurons beyond 25,
accompanied by negligible changes in R2 This
indicates that increasing complexity past the
optimal point offers no significant benefit and
may introduce unnecessary computational

overhead.
——SCG Training —=-SCG Validation SCG Testing —< LM Training
LM Validation LM Testing ——BR Training —BR Testing

0.06
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0.01
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Fig 4. MSE of the three developed ANN models at
various numbers of hidden neurons.
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Fig 5. R? of the three developed ANN models at
various numbers of hidden neurons.

Additionally, Table 1 shows summarized
results of the optimal hidden neuron
configuration, MSE, and R? for each training
algorithm. Among the tested models, the
number of; input neurons of 4, output neurons
of 1, and hidden layer of 25 neurons, for the 470
data points of experimental H>S solubility data
that were extracted from published literature
[14-19], BR achieved the best overall results,
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with the lowest MSE (0.001465) and the highest
R? (0.9904), indicating excellent predictive
accuracy and minimal generalization error. LM
followed closely, reaching its optimal
performance at 15 hidden neurons with an MSE
of 0.002865 and R? of 0.9785, providing high
accuracy with relatively low network
complexity. SCG showed the lowest
performance in terms of prediction accuracy,
achieving its best results at 35 hidden neurons
with an MSE of 0.018344 and R? of 0.8799,
although it demonstrated stable learning
behavior without significant overfitting. LM
also offers excellent performance with faster
convergence, making it an efficient alternative
when computational time is a priority. SCG,
while less accurate, may still be considered
when robustness and training stability are the
main concerns.

Table 1. MSE, R2, and the number of hidden neurons
of the three optimized ANN models.

Number
ANN h'd‘zlf
model | M99€™ | MSE(test) | R%(test)
neuron
S

BR- ANN 25
LM-ANN 15
SCG- 35
ANN

0.001465 0.9904
0.002865 0.9785
0.018344 0.8799

4.2. Evaluation of the selected ANN model

Figure 6 shows the number of; input neurons of
4, output neurons of 1, and hidden layer of 25
neurons, for the 470 data points of the
experimental H,S solubility data at various
operating conditions. This structure was
selected as the final model. The training was
performed using the BR algorithm to achieve
high accuracy and robust generalization.

Hidden Layer Output Layer
Inpul‘ WW — ( 'w' — Output
(ol Tl
a ) b 1
25 g 1
Fig 6. The obtained optimum structure of ANN

architecture for prediction of H.S output
concentration.

Figure 7 depicts the regression plot, illustrating
the relationship between the network outputs
and the actual target values for the training set
(R =0.99854), testing set (R =0.99551), and all
data combined (R = 0.9979). These values
indicate excellent accuracy and predictive
capability of the selected model, confirming its
effectiveness in representing the target data.

Train: R=0.99854

Test: R=0.99551

- ‘ A
= = Dat y
g =] Fit o o
? o S/ YT o
+ b4 o
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g £ oo
B e o
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2 3 |,
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0 0s ‘.1 05
Target Target

_All: R=0.9979 _

O Data
Fit
v=T

Output ~=1*Target + 0.00081

25 )
Target

Fig 7. Parity plots of the optimized BR-ANN model
for training data (top left), testing data (top right),
and all data (bottom).

4.3. Interpretation of the ANN model results

The high accuracy of the developed models
indicates that it has effectively learned the
underlying continuous relationship described
by principles such as Henry's law at lower
pressures and more complex interactions that
dominate at higher pressures without requiring
arbitrary data segmentation.

4.3.1. Non ideal solubility behavior

Unlike simple linear models, the developed
ANN model captures the non ideal behavior of
H,S solubility. This include deviations from
Henry's law at moderate to high pressures where
the increase in solubility is not linear with
pressure. The model also predicts the curved
isotherm and plateaue resulting from factors
such as gas-phase non ideality and liquid-phase
molecular interactions. Additionally, in a mixed
solvent system such as amine blends, the ANN
model accounts for the competition between
HaS and other components for solvation sites.
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4.3.2. The interaction effects

The solubility at a given pressure is not a single
value, rather it is a function of other conditions.
This suggests that the ANN model integrates the
effect of pressure with variations in solvent
concentration such as MDEA where the higher
pressure might allow for the use of slightly
leaner solvent to achieve the same outlet H>S
specification which is critical for process
optimization.

4.3.3. Implications of the model

The high predictive accuracy of the developed
model across a continuous pressure range
makes it a powerful tool for process design and
real time optimization. It enables engineers to
simulate H»S solubility over entire operating
range, which is important for optimizing gas
process plant such as adjusting solvent rates,
compressor discharge pressures in response to
changing feed conditions.

5. CONCLUSIONS

The ANN models for the prediction of H,S
solubility were successfully developed and
trained using three different algorithms: SCG,
LM, and BR. The model performance was
assessed using MSE and R2. The results showed
that the BR-ANN model provided the best
predictive performance with an optimal
configuration of 25 hidden neurons, achieving
(MSE = 0.001465 and R? = 0.9904),
reflecting excellent accuracy and
generalization. The LM-ANN model achieving
strong results with 15 hidden neurons (MSE =
0.002865, R* = 0.9785), making it a reliable
alternative with faster convergence. The SCG-
ANN model, although stable and less prone to
overfitting, achieved lower prediction accuracy
with its best configuration at 35 hidden neurons
(MSE = 0.018344, R* = 0.8799). The high
accuracy of the BR-ANN model does not
merely provide a numerical fit; it serves as a
high fidelity data driven surrogate for the
complex thermodynamic equilibrium of the H,S
solvent system. Its low MSE and high R? all

over a continuous pressure range confirm its
capability as a predictive tool that respects the
underlying chemical engineering principles,
making it directly applicable for complicated
design and real-time optimization tasks in gas
processing plants. Despite these promising
results, the model accuracy may diminish if
applied to processes operating under conditions
outside the training data.
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Appendix A. The ranges of the collected dataset for the ANN model.

Temperature Pressure H:S Solubility (mol

No. Absorbent Wt % p(K) (KPa) HaS / mol abs)(l)rbent) Reference
35 313.15 0.00183-313 0.0041-1.077 [14]
35 373.15 0.551-301.7 0.021-0.548 [14]
1. | MDEA 20.9 313.15 0.52-1600 0.13-1.725 [15]
50 323.15 0.1-1130.9 0.013-1.132 [16]
50 353.15 0.1-318.2 0.011-0.406 [16]
L[ 485w 51.16 353.15 0.9-1473.8 0.009-0.967 [16]
" | MDEA+2.66H,S0s | 51.16 323.15 0.1-1500.9 0.003-1.138 [16]
, | 48.5%MDEA+521 | 5401 323.15 0.1-20.4 0.002-0.251 [16]
| Wt%H,S04 53.71 353.15 0.1-122.8 0.002-0.361 [16]
4 | SOW%MDEA+(BM |__100 348.15 25.45-107.98 | 0.03017-0.36049 [17]
| IM)(AC)50wt% 100 323.15 3.27-166.09 0.03802-0.23937 [17]
5 | 30WI%MDEA+(BM | 40 348.15 15.9-408.31 0.13628-0.33105 [17]
| IM)AC)TOW% 40 323.15 32.15-459.45 | 0.16611-0.35833 [17]
o | 30W%MDEA+(BM | 35 348.15 44.19-42351 | 0.14341-0.37790 [17]
© | IM)(AC)5wt% 35 323.15 441647373 | 0.20524-0.38552 [17]
| S0Wi%MDEA+(BM | 60 348.15 22.07-288.09 | 0.08579-0.28079 [17]
© | IM)AC)TOW% 60 323.15 24.58415.04 | 0.13602-0.31570 [17]
32.5wt%MDEA+12. | 51 313.15 5.8-872 0.338-1.184 [18]
8. | SWt%DEA+6wt%A | 51 343.15 7.6-1004.9 0.349-1.106 [18]
MP 51 393.15 47.9-1036.8 0.081-0.689 [18]
o | SOWI%MDEA+(BM | 55 323.15 24.84-4372 0.17309-0.36446 [17]
' IM)(AC)5wt% 55 348.15 39.71-371.67 | 0.10825-0.32619 [17]
S MDEAT 20w 2 313.15 294-1738 0.483-1.144 [19]
10. L AMD 45 328.15 286-1761 0.48-1.088 [19]
45 343.15 287-1775 0.438-1.022 [19]
45 313.15 428-1986 0.447-1.257 [19]
1. 2?;?:{‘;[1\:2%;1}3 45 328.15 453-1975 0.434-1.177 [19]
45 343.15 434-2040 0.445-1.126 [19]
S MDEA 0wt 2 313.15 415-1991 0.396-1.264 [19]
12| Pt LowoiDs 45 328.15 426-2029 0.383-1.189 [19]
45 343.15 427-2047 0.395-1.135 [19]
45 313.15 213-1926 0.169-1.191 [19]
13. %Zzﬁ’x?iﬁ:fg 45 328.15 388-1933 0.287-1.11 [19]
45 343.15 336-1993 0.287-1.146 [19]
32.5wt%MDEA+12. | 45 343.15 14.3-999.1 0.196-1.181 [18]
14. 5wt%DEA 45 313.15 15.5-1021.1 0.404-1.226 [18]
45 393.15 66.1-1035.8 0.102-0.755 [18]
32.5wt%MDEA+12. | 49 313.15 2.5-846.2 0.29-1.154 [18]
15. | 5Swi%DEA+4wt%A | 49 343.15 2.9-9313 0.311-1.096 [18]
MP 49 393.15 48.9-981.3 0.081-0.681 [18]
32 5wt%MDEA+12. | 55 313.15 8.6-937.2 0.320-1.146 [18]
16. | 5wt%DEA+10wt% | 55 343.15 2.9-1014.5 0.331-1.119 [18]
AMP 55 393 27.8-1031.0 0.078-0.679 [18]
17 | 209w%MDEA+ | 514 313.15 1.3-1470 0.098-2.073 [15]
| 30.5wt%Sulfolane | 51.4 373.15 1.58-3210 0.024-1.887 [15]
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