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ABSTRACT 

This study focuses on the prediction of hydrogen sulphide removal efficiency in natural gas sweetening 

processes using Artificial Neural Networks (ANN). The developed model was trained on experimental 

solubility data that were extracted from literature for 17 different absorbents at various operating 

conditions, with a total of 470 data points. Three training algorithms of Scaled Conjugate Gradient 

(SCG), Levenberg Marquardt (LM), and Bayesian Regularization (BR) were evaluated to determine the 

optimal ANN architecture. The performance of each model was assessed using mean squared error 

(MSE) and the coefficient of determination (R²). The SCG algorithm achieved its best performance at 

35 hidden neurons, with MSE = 0.0183 and R² = 0.8799, showing gradual improvements but lower 

accuracy compared to other methods. The LM algorithm performed optimally at 15 hidden neurons, 

yielding MSE = 0.002865 and R² = 0.9785, demonstrating excellent predictive accuracy. The BR 

algorithm outperformed both SCG and LM, with the best results at 25 hidden neurons, achieving MSE 

= 0.001465 and R² = 0.9904, indicating superior generalization and stability.  These results highlight the 

potential of ANN as a robust tool for simulating gas sweetening processes and supporting industrial 

decision-making. 
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دراسة مقارنة لخوارزميات الشبكات العصبية في نمذجة إزالة كبريتيد الهيدروجين  
 من الغاز الطبيعي

1رتاج مادي ، 1منتهى زريق ، 1ريان الزياني، 1محمد بقر

 .ليبيا ، دولة طرابلس  ، مدينة طرابلس  ، جامعة الهندسة ، كلية الهندسة الكيميائية قسم1

ملخــــــــــــــــص البحــــــــــــــــــث 
العصبية الاصطناعية ) ( في عمليات  H₂S( للتنبؤ بكفاءة إزالة كبريتيد الهيدروجين )ANNتركز هذه الدراسة على تطبيق الشبكات 

مادة مازة عند ظروف    17النموذج المقترح تم تدريبه على نتائج دوبانية تجريبية اخدت من دراسات سابقة لعدد  تطييع الغاز الطبيعي. 
ماركاردت  -(، وليفينبرغSCGوهي: التدرج المترافق المعياري ) تم تقييم ثلاث خوارزميات تدريب .  نقطة  470تشغيلية مختلفة، لتنتج عدد  

(LM( والتنظيم البايزي ،)BR)   لتحديد البنية المثلى للشبكة العصبية الاصطناعية. تم تقييم أداء كل نموذج بناءً على متوسط الخطأ
 =R² ،MSE= 0.8799عصبونًا خفيًا ) 35عند  ( أفضل أداء لها SCG(. حققت خوارزمية ) R²( ومعامل التحديد )MSEالتربيعي ) 
عصبونًا    15( أفضل أداء عند  LM(، حيث أظهرت تحسناً تدريجياً لكن بدقة أقل مقارنة بالطرق الأخرى. بينما أدت خوارزمية )0.0183
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( على الخوارزميتين السابقتين،  BR(، مما يُظهر دقة تنبؤية عالية. وتفوقت خوارزمية ) R²، MSE= 0.002865=    0.9785خفيًا )
(، مما يشير إلى قدرة استقرائية واستقرارية   R²، MSE= 0.001465=    0.9904عصبونًا خفيًا )  25حيث حققت أفضل النتائج عند  

اتخاذ   العصبية الاصطناعية كأداة قوية لمحاكاة عمليات تطييع الغاز ودعم  الشبكات  إمكانات  الضوء على  فائقة. تُسلط هذه النتائج 
 القرارات الصناعية. 

 . تطييع الغاز ، إزالة كبريتيد الهيدروجين، الشبكات العصبية الاصطناعية ة:لادالكلمات ال

1. INTRODUCTION

The removal of hydrogen sulphide (H₂S) from 

natural gas is a critical step in gas purification 

due to the compound's toxicity, corrosiveness, 

and environmental impact. Depending on gas 

composition, pressure, and H₂S concentration, 

different industrial processes are used to ensure 

effective removal. The most common processes 

include; amine gas treating (gas sweetening), 

claus process, iron sponge process, adsorption 

process, membrane separation, and biological 

desulfurization [1,2]. However, among the 

various methods available for H₂S removal, 

amine gas sweetening (shown in Figure 1) is 

one of the most widely applied and effective 

technologies in the natural gas industry [3]. The 

figure shows that sour feed gas is fed into the 

amine unit. The aqueous amine solution enters 

at the top of the amine absorber unit, and the 

sour gas is then fed into the bottom, flowing 

counter-currently while in contact with it. The 

amine solution that absorbed the acid gas 

emerged from the bottom of the absorber as the 

rich amine. Sweet gas that has been treated 

leaves at the absorber’s top. Therefore, it can be 

postulated that amines remove H2S in a two-

step process, where the gas dissolves in the 

liquid (physical absorption) and then the 

dissolved gas dissociates into a weak ionic acid, 

reacts with the weakly basic amines [4]. Several 

types of amines  have been studied such as 

monoethanolamine (MEA), diethanolamine 

(DEA), methyldiethanolamine (MDEA), and 

sterically hindered amines like 2-amino-2-

methyl-1-propanol (AMP) and tert-butyl 

ethanolamine (TBEE) [4]. These solvents react 

reversibly with acidic gases, which make them 

widely used in gas sweetening units. For 

example, MDEA is characterized by different 

reaction rates of H2S and of carbon dioxide 

(CO₂) in the solution; those of H₂S are 

instantaneous, while those of CO₂ are finite and 

slow with respect to the mass transfer rate [5]. 

This difference in the reaction rate makes the 

MDEA absorption system kinetically selective 

towards H₂S, so it is used for purification of 

several gaseous streams, in particular when both 

the two acid gases are present [4]. 

Fig 1. Typical process flow diagram of an amine -

treating unit for H2S removal [6]. 

Inspired by the human brain, Artificial Neural 

Networks (ANNs) are advanced computational 

models designed to detect complex patterns in 

data. Their key strengths, compared to 

traditional models, are their ability to model 

non-linear relationships and handle noisy data, 

making them powerful tools for difficult 

engineering problems and universal function 

approximators [7]. The ANN's structure 

consisting of input, hidden, and output layers of 

interconnected neurons that are capable of 

processes information through activation 

functions, enabling it to learn sophisticated 
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mappings between inputs and outputs for tasks 

like prediction and classification [8].  

Several studies have demonstrated the 

effectiveness of artificial intelligence 

specifically neural network models in 

predicting the solubility and concentration of 

H₂S during gas sweetening processes [9,10]. 

Nimmanterdwong et al. [11] developed an 

ANN model to predict H₂S solubility in various 

absorbents, including amines, ionic liquids, and 

hybrid mixtures. The study found that 

Levenberg–Marquardt achieved the best 

performance (MSE = 0.0014, R² = 0.9817). 

Hakimi et al. [6] applied ANN to predict H₂S 

concentration in sweet gas exiting an Acid Gas 

Removal Unit (AGRU). The model used input 

variables such as MDEA and Piperazine 

concentrations, temperature, and pressure. The 

study showed that the best-performing ANN 

trained via Levenberg–Marquardt technique 

achieved (R² = 0.966, MAE = 0.066, and RMSE 

= 0.122). Shafiei et al. [12] investigated H₂S 

solubility in ionic liquids using machine 

learning techniques. Additionally, the 

compared traditional backpropagation ANN 

(BP-ANN) with particle swarm optimization-

trained ANN (PSO-ANN) yielding R² = 0.9515 

and MSE = 0.00335 for BP-ANN, while PSO-

ANN achieved significantly better performance 

with R² = 0.9922 and MSE = 0.00025. 

Therefore, it is clear that ANN provide a 

promising solution, as they can capture hidden 

patterns in the data and predict system behavior 

accurately and efficiently.  

Therefore, selecting the optimal model is 

challenging due to the availability of several 

training algorithms and network configurations. 

This necessitates a thorough performance 

evaluation to identify the best model for a 

specific application.  

In this study, three training algorithms (SCG, 

LM, and BR) were tested to evaluate their 

performance in predicting the behavior of the 

H₂S removal unit. Furthermore, the results 

based on performance metrics such as MSE and 

R² were compared to identify the most accurate 

and reliable model [13]. Then the best model 

was selected for a comprehensive analysis of its 

performance using illustrative MATLAB plots.  

2. MATERIALS AND METHODS

MATLAB, a popular tool for data analysis and 

algorithm development, was used in this project 

to create an ANN model for predicting H₂S 

solubility in various absorbents. The model is 

based on the experimental solubility data of H₂S 

in various absorbents. The developed model 

was trained on experimental solubility data that 

were extracted from published literature [14-19] 

for 17 different absorbents at various operating 

conditions, in a total of 470 data points as 

depicted in Appendix A. . The absorbents 

include amines, ionic liquids, physical organic 

solvents, and hybrid absorbents (such as amine, 

physical solvent and amine, and ionic liquid), 

providing a diverse and comprehensive dataset 

suitable for training the ANN model. 

In this study, the solubility of H2S was 

considered as the output, while the absorbents 

and their weight fractions as well as operating 

temperature (K) and pressure (kPa) were 

considered as inputs as depicted in Figure 2. In 

case of a pure absorbent, unity weight fraction 

was the input as the absorbent concentration. 

For a blended absorbent, the weight fraction of 

each absorbent and its corresponding absorbent 

codename were chosen as the input into the 

ANN model. The total of 470 data points was 

split into three sets with 70% for training, and 

the remaining 30% was divided equally into 

validation and testing sets with each 

representing 15% of the total data. 
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Fig 2. The configured artificial neural network with 

multiple layers. 

3. THEORY AND CALCULATION  

3.1. Mathematical expressions 

Due to the slightly disparate scales of the 

different variables in the dataset, a min-max 

normalization approach was applied to the 

training data to bring all features to the same 

scale.  

𝑥  =  
𝑋−𝑋𝑚𝑖𝑛

𝑋max −𝑋𝑚𝑖𝑛

                                           (1) 

where: 

x̂ is the normalized value. 

x is the original input value. 

𝑥𝑚𝑖𝑛 is the minimum value. 

𝑥𝑚𝑎𝑥 is the maximum value. 

The Neural Networks Toolbox in MATLAB 

with Neural Fitting Application   was   applied 

for designing the ANN model. 

The model employs the backpropogation (BP) 

framework within the multilayer, feedforward 

(FF) architecture, a powerful pattern that 

enables the network to adapt by minimizing 

error through gradient decent. The equation that 

expresses the weight update process during 

training is given by: 

𝜔𝑖𝑗 (𝑡+1)   =   𝜔𝑖𝑗(𝑡) +  𝜂𝛿𝑗𝑥𝑖                  (2) 

Where: 

𝑤𝑖𝑗 is the weight between neuron i and neuron j 

𝛿𝑗 is the error term for neuron j 

𝑥𝑖 is the input from neuron i 

𝜂 is the learning rate 

The FF structure, typically comprising hidden 

layers of sigmoid neurons and a linear output 

layer, is capable of modeling complex linear 

and nonlinear relationships. As no single BP 

based algorithm is optimal, the performance are 

highly dependent on the specific problem and 

data. Therefore, the strategy of this research is 

to evaluate three distinct and efficient 

algorithm: Levenberg-Marquardt (TRAINLM), 

as of its rapid convergence; Scaled Conjugate 

Gradient (TRAINSCG), as of its robustness and 

lack of line search parameters; and Bayesian 

Regularization (TRAINBR), as of its ability to 

improve generalization and prevent overfitting. 

The performance of these algorithms will be 

compared using MSE and R² to identify the 

most effective training strategy for the H2S 

solubility prediction.  

3.2. Training the neural network 

A range of hidden neuron counts, from 1 to 35, 

is tested in order to determine the optimal 

network architecture. After constructing the 

neural network, the input data are fed into the 

network along with the desired outputs. The 

network adapts to the data through a process 

known as training, using specific training 

algorithms. These algorithms determine the 

modelling, learning, and validation properties 

of the network.  

In this study, the activation function employed 

in the hidden layer is the hyperbolic tangent 

sigmoid transfer function (tansig), which is a 

widely used activation function for hidden 

layers in neural networks, is given by: 

𝑓(𝑥) =
2

1+𝑒−2𝑥 
− 1                                      (3) 

3.3. Model evaluation 

To evaluate a prediction performance of the 

developed ANN models, an error analysis 

through the MSE and R² was conducted. Figure 

3 summarizes the steps applied for evaluation.  

These two parameters are typically used for 

indicating an error between the actual and 

predicted values (in this case, the experimental 

and the predicted solubility of H₂S). Equations 
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used for calculations of the two predictive 

indicators (MSE and R²) are given by equations 

(4) and (5), respectively [13].                   𝑀𝑆𝐸 =

∑ (𝛼exp 𝑖 − 𝛼𝑝𝑟𝑒𝑑 𝑖)
2  𝑛

𝑖=1

𝑛
                         (4) 

𝑹𝟐 = 1 −  (
∑ (𝛼𝑝𝑟𝑒𝑑 𝑖−𝛼𝑒𝑥𝑝 𝑖)

2𝑛
𝑖=1

∑ (𝛼𝑒𝑥𝑝 𝑖−𝛼𝑒𝑥𝑝 𝑖  
− )

2
𝑛
𝑖=1

)                 (5) 

Where: 

 n is the number of data points. 

𝛼exp 𝑖 is experimental solubility of H₂S. 

𝛼𝑝𝑟𝑒𝑑 𝑖 is predicted solubility of H₂S. 

𝛼𝑒𝑥𝑝
−  is average experimental solubility of H₂S. 

 

Fig 3. Flowchart summarizing the steps applied. 

Additionally, instead of individually comparing 

the predicted and experimental data in a 

tabulation format, the parity chart positions 

predicted solubility of H2S with its 

corresponding experimental value in a graphical 

format. Along the diagonal line, where the 

predicted value equals to the experimental 

value, each coordination of the predicted and 

experimental values is located accordingly. For 

a promising ANN model, the data distribution 

should be closely along the diagonal line. 

4. RESULTS AND DISCUSSION 

4.1. Performance of the selected ANN model 

The evaluation metrics were calculated for the 

training, validation, and testing datasets for the 

LM-ANN and SCG-ANN models. However, 

the BR-ANN model utilized only training and 

testing datasets. This is attributed to the 

fundamental difference in the BR training 

algorithm. Unlike LM and SCG, which uses a 

separate validation set for early stopping to 

prevent overfitting, BR uses a probabilistic 

framework that intrinsically penalizes model 

complexity. This is achieved by minimizing an 

objective function that balances data error with 

a regularization term based on the magnitude of 

the network weights [11,20,21]. 

As a result, three predictive models of LM-

ANN, BR-ANN, and SCG-ANN were 

constructed. To justify the effectiveness of the 

developed models, the MSE and R² were 

applied as depicted in Figures 4 and 5, 

respectively.  

The results for the SCG algorithm show a 

gradual improvement in both the MSE and R² 

with an increasing number of neurons, reaching 

the best performance on the testing set at 35 

hidden neurons, where MSE(test) = 0.018344 

and R²(test) = 0.8799. For example, a consistent 

improvement in performance across the 

training, validation, and testing sets, 

particularly beyond 20 neurons, where MSE 

values drop noticeably and R² steadily 

approaches 0.80–0.88. The gap between 

training, validation, and testing performance 

remains relatively small, suggesting good 

generalization capability. It is also notable that 

this small performance gap persists at higher 

neuron counts, indicating that the model does 

not exhibit strong overfitting at 35 neurons; all 

datasets show relatively similar behavior. 

However, the relatively higher MSE on the 

testing set compared to some other algorithms 

indicates that SCG may not provide the highest 

possible prediction accuracy, but it achieves a 

reasonable balance between complexity and 

training stability. 
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The figures also show the performance of the 

LM algorithm which shows a rapid 

improvement in accuracy as the number of 

hidden layer neurons increases, with a 

substantial drop in the MSE occurring between 

5 and 10 neurons. The optimal configuration 

was achieved with 15 hidden neurons, resulting 

in MSE(test) = 0.002865 and R²(test) = 0.9785, 

indicating excellent predictive capability. Up to 

around 30 neurons, both MSE and R² remain 

stable and consistently high in performance, 

with low error and R² values close to 1.0 across 

training, validation, and testing sets. However, 

after exceeding 30 hidden neurons, there is a 

noticeable increase in MSE and a slight drop in 

R², especially in the validation and testing 

datasets. This behavior suggests that the model 

begins to lose generalization capacity, possibly 

due to overfitting caused by excessive network 

complexity. The gap between the training and 

testing curves remains relatively small in the 

optimal range (around 15 neurons), indicating 

stable learning and minimal overfitting. The R² 

value of approximately 0.98 in the optimal 

configuration means the model explains about 

98% of the variance in the target variable on 

unseen data as an excellent result. 

The figures also show the performance of the 

BR algorithm which demonstrates rapid and 

consistent performance improvement as the 

number of hidden neurons increases, with a 

sharp decline in MSE and a steady rise in the R². 

The optimal configuration was achieved with 25 

hidden neurons, yielding an MSE(test) = 

0.001465 and R²(test) = 0.9904, indicating 

excellent predictive accuracy and minimal 

generalization error. Compared to SCG and 

LM, BR achieves high accuracy with fewer 

neurons while maintaining exceptional stability 

across both training and testing datasets. 

Notably, after around 10 neurons, the 

performance curves flatten, with only marginal 

gains observed beyond this point. The minimal 

gap between training and testing results 

suggests strong resistance to overfitting. While 

BR maintains superior stability, slight 

fluctuations in MSE are observed when 

increasing the hidden neurons beyond 25, 

accompanied by negligible changes in R². This 

indicates that increasing complexity past the 

optimal point offers no significant benefit and 

may introduce unnecessary computational 

overhead. 

 

Fig 4. MSE of the three developed ANN models at 

various numbers of hidden neurons. 

 
Fig 5. R² of the three developed ANN models at 

various numbers of hidden neurons. 

Additionally, Table 1 shows summarized 

results of the optimal hidden neuron 

configuration, MSE, and R² for each training 

algorithm. Among the tested models, the 

number of; input neurons of 4, output neurons 

of 1, and hidden layer of 25 neurons, for the 470 

data points of experimental H2S solubility data 

that were extracted from published literature 

[14-19],  BR achieved the best overall results, 



 

 Baqar et al. 776 

 

 J Technol Res. 2025;3:770-779.                                                                                  https://jtr.cit.edu.ly 

 

with the lowest MSE (0.001465) and the highest 

R² (0.9904), indicating excellent predictive 

accuracy and minimal generalization error. LM 

followed closely, reaching its optimal 

performance at 15 hidden neurons with an MSE 

of 0.002865 and R² of 0.9785, providing high 

accuracy with relatively low network 

complexity. SCG showed the lowest 

performance in terms of prediction accuracy, 

achieving its best results at 35 hidden neurons 

with an MSE of 0.018344 and R² of 0.8799, 

although it demonstrated stable learning 

behavior without significant overfitting. LM 

also offers excellent performance with faster 

convergence, making it an efficient alternative 

when computational time is a priority. SCG, 

while less accurate, may still be considered 

when robustness and training stability are the 

main concerns. 

Table 1. MSE, R², and the number of hidden neurons 

of the three optimized ANN models. 

ANN 

model 

Number

 of 

hidden 

neuron

s 

MSE(test) R²(test) 

BR- ANN 25 0.001465 0.9904 

LM-ANN 15 0.002865 0.9785 

SCG-

ANN 

35 0.018344 0.8799 

4.2. Evaluation of the selected ANN model 

Figure 6 shows the number of; input neurons of 

4, output neurons of 1, and hidden layer of 25 

neurons, for the 470 data points of the 

experimental H2S solubility data at various 

operating conditions. This structure was 

selected as the final model. The training was 

performed using the BR algorithm to achieve 

high accuracy and robust generalization. 

 
Fig 6. The obtained optimum structure of ANN 

architecture for prediction of H2S output 

concentration. 

Figure 7 depicts the regression plot, illustrating 

the relationship between the network outputs 

and the actual target values for the training set 

(R = 0.99854), testing set (R = 0.99551), and all 

data combined (R = 0.9979). These values 

indicate excellent accuracy and predictive 

capability of the selected model, confirming its 

effectiveness in representing the target data. 

 

Fig 7. Parity plots of the optimized BR-ANN model 

for training data (top left), testing data (top right), 

and all data (bottom). 

4.3. Interpretation of the ANN model results 

The high accuracy of the developed models 

indicates that it has effectively learned the 

underlying continuous relationship described 

by principles such as Henry's law at lower 

pressures and more complex interactions that 

dominate at higher pressures without requiring 

arbitrary data segmentation.  

4.3.1. Non ideal solubility behavior 

Unlike simple linear models, the developed 

ANN model captures the non ideal behavior of 

H2S solubility. This include deviations from 

Henry's law at moderate to high pressures where 

the increase in solubility is not linear with 

pressure. The model also predicts the curved 

isotherm and plateaue resulting from factors 

such as gas-phase non ideality and liquid-phase 

molecular interactions. Additionally, in a mixed 

solvent system such as amine blends, the ANN 

model accounts for the competition between 

H2S and other components for solvation sites. 
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4.3.2. The interaction effects 

The solubility at a given pressure is not a single 

value, rather it is a function of other conditions. 

This suggests that the ANN model integrates the 

effect of pressure with variations in solvent 

concentration such as MDEA where the higher 

pressure might allow for the use of slightly 

leaner solvent to achieve the same outlet H2S 

specification which is critical for process 

optimization. 

4.3.3. Implications of the model 

The high predictive accuracy of the developed 

model across a continuous pressure range 

makes it a powerful tool for process design and 

real time optimization. It enables engineers to 

simulate H2S solubility over entire operating 

range, which is important for optimizing gas 

process plant such as adjusting solvent rates, 

compressor discharge pressures in response to 

changing feed conditions.  

5. CONCLUSIONS 

The ANN models for the prediction of H2S 

solubility were successfully developed and 

trained using three different algorithms: SCG, 

LM, and BR. The model performance was 

assessed using MSE and R². The results showed 

that the BR-ANN model provided the best 

predictive performance with an optimal 

configuration of 25 hidden neurons, achieving 

(MSE = 0.001465    and     R² = 0.9904), 

reflecting excellent accuracy and 

generalization. The LM-ANN model achieving 

strong results with 15 hidden neurons (MSE = 

0.002865, R² = 0.9785), making it a reliable 

alternative with faster convergence. The SCG-

ANN model, although stable and less prone to 

overfitting, achieved lower prediction accuracy 

with its best configuration at 35 hidden neurons 

(MSE = 0.018344, R² = 0.8799). The high 

accuracy of the BR-ANN model does not 

merely provide a numerical fit; it serves as a 

high fidelity data driven surrogate for the 

complex thermodynamic equilibrium of the H2S 

solvent system. Its low MSE and high R2 all 

over a continuous pressure range confirm its 

capability as a predictive tool that respects the 

underlying chemical engineering principles, 

making it directly applicable for complicated 

design and real-time optimization tasks in gas 

processing plants. Despite these promising 

results, the model accuracy may diminish if 

applied to processes operating under conditions 

outside the training data. 
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Appendix A. The ranges of the collected dataset for the ANN model. 

No. Absorbent Wt % 
Temperature  

(K) 

Pressure 

(KPa) 

H2S Solubility (mol 

H2S / mol absorbent) 
Reference 

1. MDEA 

35 313.15 0.00183-313 0.0041-1.077 [14] 

35 373.15 0.551-301.7 0.021-0.548 [14] 

20.9 313.15 0.52-1600 0.13-1.725 [15] 

50 323.15 0.1-1130.9 0.013-1.132 [16] 

50 353.15 0.1-318.2 0.011-0.406 [16] 

2. 
48.5wt% 

MDEA+2.66H2SO4 

51.16 353.15 0.9-1473.8 0.009-0.967 [16] 

51.16 323.15 0.1-1500.9 0.003-1.138 [16] 

3. 
48.5%MDEA+5.21

wt%H2SO4 

54.01 323.15 0.1-20.4 0.002-0.251 [16] 

53.71 353.15 0.1-122.8 0.002-0.361 [16] 

4. 
50wt%MDEA+(BM

IM)(AC)50wt% 

100 348.15 25.45-107.98 0.03017-0.36049 [17] 

100 323.15 3.27-166.09 0.03802-0.23937 [17] 

5. 
30wt%MDEA+(BM

IM)(AC)10wt% 

40 348.15 15.9-408.31 0.13628-0.33105 [17] 

40 323.15 32.15-459.45 0.16611-0.35833 [17] 

6. 
30wt%MDEA+(BM

IM)(AC)5wt% 

35 348.15 44.19-423.51 0.14341-0.37790 [17] 

35 323.15 44.16-473.73 0.20524-0.38552 [17] 

7. 
50wt%MDEA+(BM

IM)(AC)10wt% 

60 348.15 22.07-288.09 0.08579-0.28079 [17] 

60 323.15 24.58-415.04 0.13602-0.31570 [17] 

8. 

32.5wt%MDEA+12.

5wt%DEA+6wt%A

MP 

51 313.15 5.8-872 0.338-1.184 [18] 

51 343.15 7.6-1004.9 0.349-1.106 [18] 

51 393.15 47.9-1036.8 0.081-0.689 [18] 

9. 
50wt%MDEA+(BM

IM)(AC)5wt% 

55 323.15 24.84-437.2 0.17309-0.36446 [17] 

55 348.15 39.71-371.67 0.10825-0.32619 [17] 

10. 
25wt%MDEA+20wt

%AMP 

45 313.15 294-1738 0.483-1.144 [19] 

45 328.15 286-1761 0.48-1.088 [19] 

45 343.15 287-1775 0.438-1.022 [19] 

11. 
25Wt%MDEA+15w

t%AMP+5wt%Pz 

45 313.15 428-1986 0.447-1.257 [19] 

45 328.15 453-1975 0.434-1.177 [19] 

45 343.15 434-2040 0.445-1.126 [19] 

12. 
25wt%MDEA+10wt

%AMP+10wt%Pz 

45 313.15 415-1991 0.396-1.264 [19] 

45 328.15 426-2029 0.383-1.189 [19] 

45 343.15 427-2047 0.395-1.135 [19] 

13. 
25wt%MDEA+5wt

%AMP+15wt%Pz 

45 313.15 213-1926 0.169-1.191 [19] 

45 328.15 388-1933 0.287-1.11 [19] 

45 343.15 336-1993 0.287-1.146 [19] 

14. 

32.5wt%MDEA+12.

5wt%DEA 

45 343.15 14.3-999.1 0.196-1.181 [18] 

45 313.15 15.5-1021.1 0.404-1.226 [18] 

45 393.15 66.1-1035.8 0.102-0.755 [18] 

15. 

32.5wt%MDEA+12.

5wt%DEA+4wt%A

MP 

49 313.15 2.5-846.2 0.29-1.154 [18] 

49 343.15 2.9-931.3 0.311-1.096 [18] 

49 393.15 48.9-981.3 0.081-0.681 [18] 

16. 

32.5wt%MDEA+12.

5wt%DEA+10wt%

AMP 

55 313.15 8.6-937.2 0.320-1.146 [18] 

55 343.15 2.9-1014.5 0.331-1.119 [18] 

55 393 27.8-1031.0 0.078-0.679 [18] 

17. 
20.9wt%MDEA+ 

30.5wt%Sulfolane 

51.4 313.15 1.3-1470 0.098-2.073 [15] 

51.4 373.15 1.58-3210 0.024-1.887 [15] 

 


