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ABSTRACT

Accurate equivalent circuit parameter estimation for solar cells can significantly provide actionable
insights for photovoltaic (PV) system designers. In this paper, we present a comparative analysis of two
commercial PV modules, Jinko JKM365M (monocrystalline) and Canadian Solar CS3U-365PB-FG
(polycrystalline bifacial), tested under distinct real-world environmental conditions, which were
conducted under high irradiance with elevated temperature (1000 W/m?, 65°C) and low irradiance with
moderate temperature (200 W/m?, 25°C). A rigorous preprocessing pipeline was applied to enhance data
quality and ensure the reliability of the extracted parameters. Both Differential Evolution (DE) and
Particle Swarm Optimization (PSO) were implemented in MATLAB and evaluated based on
convergence behavior, Root Mean Square Error (RMSE), and alignment with manufacturer
specifications. The key findings emphasized the performance of the optimization algorithms and the
accuracy of the models. This study makes several noteworthy contributions to the field of photovoltaic
modeling, particularly in the context of parameter estimation using field-measured data. One of the
primary achievements lies in validating the efficacy of DE as a superior optimization algorithm for PV
applications. The findings contribute to more accurate PV modeling, improved system diagnostics, and
enhanced design and control of solar energy systems.

Keywords: Photovoltaic (PV); Double diode model (DDM); Differential Evolution algorithm (DE); Particle
Swarm Optimization algorithm (PSO).
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1. INTRODUCTION

Photovoltaic (PV) solar energy is one of the
promising technologies due to its ease of use
and decreasing costs. The PV module consists
of PV cells that convert sunlight directly into
electricity, and their performance depends on
the type of semiconductor materials used. PV
panels are configured as series-parallel solar
cells in order to control voltage and current
output values, and their performance is affected
by meteorological data such as solar irradiance
and cell temperature[1].

Parameter identification of the solar panel is
crucial for optimizing performance and fault
detection calculations. Single-diode (SD) and
double-diode (DD) equivalent circuit can be
extracted numerically from experimental
current-voltage (I-V). Various numerical
methods have been proposed for nonlinear
optimization problems, such as Newton-
Raphson (NR) and heuristic techniques like
Differential Evolution (DE) and Particle Swarm
(PS)[2].

Much research is being done in order to
extract the solar cell parameters, for example an
optimized SDM approach is proposed in [3] for
parameter extraction. This method was tested
on the commercial KC200GT solar cell and the
CS6K-280M polycrystalline module, using the
Sooty Tern Optimization Algorithm (STOA).

Triple Diode Model (TDM) on polycrystalline
modules is discussed in [4], while [5] focused
on monocrystalline modules with SDM, but
neither provided a comparative analysis of the
two technologies under varying irradiance and
temperature conditions, a gap that affects
understanding technology-specific behavior.

An enhanced differential evolution (EDE)
algorithm for parameter extraction in
photovoltaic (PV) models, including SDM,
DDM, and TDM, is presented in [5]. Their
study applied the EDE method, using
experimental [-V data collected under real
irradiance and temperature conditions.

The results in [5] showed a significant reduction
in modeling errors, achieving an RMSE of
0.008123 under standard test conditions (STC).
The authors argued that such an approach could
better capture the nonlinear behavior of PV
cells, particularly under low irradiance or high
temperatures. Moreover, the EDE algorithm in
[5] demonstrated improved convergence and a
significant reduction in RMSE, achieving an
RMSE of 0.00789 compared to 0.00912 with
traditional differential evolution, highlighting
its robustness in handling nonlinear PV
characteristics.
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It can be noted that some studies compare the
performance of optimization algorithms like DE
and PSO, such as in [6], and a few conduct
systematic comparisons across a wide range of
environmental conditions, particularly at low
irradiance levels (e.g., 200 W/m?). Parameter
estimation under low irradiance poses
significant challenges due to reduced signal
clarity, yet this scenario remains underexplored
in the literature, limiting the robustness of
current methods. This study utilizes
experimentally measured [-V curves, rather

than simulations. Such activities are expected to

enhance the accuracy and practicality of PV
modeling, thereby facilitating the development
of solar energy systems under real-world
conditions.

2. SYSTEM MODEL

This study investigates two commercial
photovoltaic  modules—Jinko  JKM365M
(monocrystalline) and Canadian Solar CS3U-
365PB-FG (polycrystalline bifacial), chosen for
their technological diversity and prominence in
current PV markets [7], [8].

2.1 Equivalent Circuit Models

The SDM captures the basic nonlinear I-V
behavior using a current source, a diode, series
resistance (Rs), and shunt resistance (Rp). To
improve accuracy, the DDM adds a second
diode to account for additional recombination
effects in the depletion region. The circuit
representations shown in Fig. 1 form the
analytical foundation for modeling photovoltaic
behavior.

Fig 1. Electrical equivalent circuit of a DDM.

The terminal voltage (V) and output current (I)
obey the equation.

q(V +IR,)
1 =Iph—10[exp <T -1

V + IR,
Rsh

(D).

Where q, is the diode ideality constant, g is the
electron charge, & is Boltzmann’s constant, and
T is the temperature of the P-N junction in
Kelvin’s, and J,, is the photovoltaic current. The
current—voltage relationship for the DDM is
defined by the equation:

q(V +IRy)
I= Iph —101 [exp <W -1

V + IR,
o (12522

V + IR, @
Rsh .

This model introduces two additional
parameters compared to the SDM namely, Loz
and az, totaling seven parameters. Although this
increases  computational  complexity, it
significantly enhances the model’s accuracy in
simulating PV cell behavior under varying
environmental conditions, such as low
irradiance or high temperatures.

2.2 Optimization Parameters

Equations (1,2) constitute a nonlinear, multi-
variable optimization problem. The inherent
complexity arises from the exponential nature
of the governing equations, which results in
multiple local minima. The objective of
optimization is to minimize the RMSE between
measured (/e) and modeled (Ip) currents:

1 2
RMSE = \/ﬁZévz1(Ie,i - Ip,i) )

The optimization variables in equations (1,2)
are:

SDM: O5py = {I,p, 1o, Rs, Ry, a} 4)

DDM: 6y = {In, 101,152, R, Ry, a1, a5} (5)
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2.3 Optimization Algorithms

A rugged search landscape motivates this study
to adopts  metaheuristic = optimization
algorithms, which are particularly well suited
for navigating non-convex, high-dimensional
search spaces without requiring gradient
information. Among the various approaches
available, DE and PSO were selected for their
robustness, ease of implementation, and
documented success in photovoltaic modeling
contexts.

2.3.1 Optimization Setup for DE

DE is a population-based, stochastic
optimization algorithm designed to efficiently
explore complex, multi-dimensional search
spaces. The algorithm begins by randomly
initializing a population of candidate solutions,
each representing a potential parameter
vector X, 4. It then iteratively refines the
population through three core operations:
mutation, crossover, and selection [9]. The
velocity can be updated in Mutation operation
as:

Vi,g = Xrl,g + F(XrZ,g - Xr3,g)- (6)

This exploration-exploitation trade-off is
managed by the DE control parameters: the
mutation factor (F), the crossover rate (CR), and
the population size. These parameters must be
optimized so that the algorithm converges and
does not stagnate. Therefore, for DDM
configuration: Population size: N, =70 (10
times the 7 parameters), with identical F = 0.85
and CR = 0.6. Termination: stops after 2000
generations or if RMSE improvement falls
below 1x10~7 for 100 consecutive
generations.

2.3.2 Optimization Setup for PSO

PSO is a population-based optimization
algorithm inspired by the collective behavior
observed in bird flocks and fish schools. The
algorithm begins by randomly initializing a

population of candidate solutions, each
representing a potential parameter vector. The
following equations mathematically define how
the algorithm proceeds step by step and the
velocity and position for every particle are
calculated using two guidance components: the
best position (pbest), and the global best
position (gbest) experienced so far by the
swarm[10],

v; (t+1) = wv; ) + 1y (pbest - xi(t))
+ (X ) (gbest - xi(t)) xi(t
+1)
=xi(t) +vi(t+1)  (7)

For DDM Configuration, Population size is set to:
N, = 140, using the same w = 0.7,¢; = ¢, = 2.
Termination: Stops after 2000 generations or if
RMSE improvement falls below 1 X 1077 for 100
consecutive generations [5].

3. MEASUREMENT TECHNIQUES

Accurate parameter estimation of PV models
relies heavily on the quality and reliability of
experimental current-voltage (I-V) data.

3.1 Field Data Collection

Measurements were conducted using portable
I-V curve tracers in conjunction with a range of
temperature measurement devices, including
conventional thermometers, laser-based
sensors, and thermocouples, to accurately
record ambient temperature and PV module
surface temperature. Additionally, dedicated
instruments were employed to measure real-
time solar irradiance. This integrated setup
enabled synchronized acquisition of both
electrical and environmental data under natural
sunlight conditions. For measurement diversity
to simulate various operational states of PV
modules, I-V data were collected under a broad
range of irradiance levels (e.g., 200-1000
W/m?) and temperatures (25—65°C). This range
ensures the models are tested for robustness
under both ideal and suboptimal conditions.
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3.2 Preprocessing and Filtering

The collected data were subjected to noise
reduction techniques, including moving
average smoothing and outlier removal based
on statistical thresholds. Additionally,
weighting techniques were applied to mitigate
bias toward data clusters in more frequent
operating regions. [11] presented a data-
driven approach for extracting key features
from field-measured -V  curves of
photovoltaic modules, with an emphasis on
improving parameter estimation accuracy
through preprocessing. Their method employs
linear regression and spline-based smoothing
techniques to mitigate noise and distortions
commonly observed in real-world I-V data.

4. RESULTS AND DISCUSSION

This section may be divided into subheadings or
combined. A combined results and discussion
section is often appropriate.  This should
explore the significance of the results of the
work; don’t repeat them. Avoid extensive
citations and discussions of published literature.

4.1 Extracted DDM parameters

Table 1 demonstrates the superior performance
of Differential Evolution (DE) over Particle
Swarm Optimization (PSO) in estimating
Double-Diode Model (DDM) parameters under
extreme operating conditions. For the Jinko
JKM365M module at 1000 W/m? and 65°C, DE
achieves more accurate photocurrent estimation
(9.75 A, closely matching the short-circuit
current of 9.75 A), lower saturation currents
(5.0x10° A and 2.0x10® A), and optimal
ideality factors (1.20 and 1.80, respectively).

In the case of the Canadian Solar CS3U-365PB-
FG module under 200 W/m? at 25°C, DE
provides precise photocurrent values (2.10 A)
and higher shunt resistance (700 ), indicating
reduced current leakage. These results show
excellent agreement with manufacturer
specifications and are consistent with previous
studies [6]. The comparative analysis highlights

DE's robustness in parameter extraction across
different photovoltaic  technologies and
operating conditions.

4.2 Error Metric

Table 2 summarizes the error metrics for the DE
algorithm applied to the DDM across various
operating conditions and photovoltaic (PV)
module types. The results demonstrate DE’s
high accuracy, with RMSE values ranging from
0.0141 to 0.0210 and R? values consistently
exceeding 0.995, indicating an excellent fit
between measured and modeled I-V curves. At
high irradiance (1000 W/m?, 65°C), DE
achieves lower RMSE (0.0141  for
monocrystalline, 0.0165 for polycrystalline)
and extremely low MBE (4.908x10® and -
9.500x107°%, respectively), confirming
negligible systematic bias. at low irradiance
(200 W/m?, 25°C), RMSE increases slightly
(0.0210 for monocrystalline, 0.0205 for
polycrystalline) with higher MBE (1.500x1073
and  2.000x107%), reflecting  increased
experimental noise and challenges in modeling
PV behavior under low light, as can be seen in

[6].

4.2 Convergence Behavior Analysis of DE
and PSO Algorithms

This section presents the convergence curves
for the DE and PSO algorithms applied to the
DDM under two operating conditions: 1000
W/m?, 65°C (high irradiance) and 200 W/m?,
25°C (low irradiance). The following figures
present the convergence curves to support this
analysis.

Under high irradiance conditions (1000 W/m?,
65°C) using monocrystalline panels., DE
required about 1480 generations to converge
with an RMSE of 0.014, while PSO converged
in approximately 800 generations with a higher
RMSE of 0.018, indicating a trade-off between
speed and accuracy.
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Table 1. Comparison of DDM Parameters Between DE and PSO.

Condition Algo. a, a, R (QY) | Ry () | In (A) I,y (A) I, (A)
1000 W/m?, DE
o -
65°C, Mono 120 | 1.80 023 | 900 | 975 | 5x10% |2x10°
cry
200 W/m?2, PSO
o -
25°C, Poly 125 | 185 024 | 850 | 972 | §x10° | 25x10"
cry. 8
Table 2. Error Metrics for the DE. with DDM Configuration.
Condition PV Type RMSE MBE R’
1000 W/m?2, Mono-
4.908x1078
65°C crystalline 0.0141 0.99998
1000 W/m2, Poly-
-9.500x10°®
65°C crystalline 0.0165 0.99989
Convergence Curves of DE and PSO for DDM (200 Wim?, 25 °C)
o, Convergence Curves of DE and PSO for DDM (1000 W/m?, 65 °C) - ro00u
v 0.20
0.6
o %’u)ﬁ
g o E 0.10 . L
02 oost | \ -
0.1F B S

0.0

0 200 400

600

800
Generation

1000 1200 1400 1600

Fig 2. Convergence curves of DE and PSO for
DDM models under 1000 W/m?, 65°C.
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Fig 3. Convergence curves of DE and PSO for
DDM models under 200 W/m?, 25°C.
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Similarly, Fig. 2 shows the convergence curves
under low irradiance (200 W/m?, 25°C) using
polycrystalline panels, requiring about 480
generations with an RMSE of 0.020, compared
to PSO’s 325 generations and RMSE of 0.03.
As shown in the figures, DE exhibits smoother
and more stable convergence compared to PSO.

5. CONCLUSIONS

This study concludes with a comprehensive
evaluation of parameter estimation techniques
for photovoltaic (PV) modules, drawing on
field-measured current-voltage (I-V) data to
model two distinct PV technologies under
varying environmental conditions. The study
employed Differential Evolution (DE) as the
primary optimization algorithm, with Particle
Swarm Optimization (PSO) serving as a
benchmark, to extract parameters for Double-
Diode Model (DDM). The DDM, despite its
superior accuracy, brings with it a
computational burden; therefore, finding a
middle ground between precision and
processing speed continues to be a critical area
needing further exploration.

Even though this study offers an elaborate
assessment of PV parameter estimation
techniques, the following limitations apply:
Environment Coverage, Quality of Data,
Algorithmic Constraints, and Assumptions of
the Model. These limitations are offset by
extensive data preprocessing, datasheet
benchmarking of PV module manufacturers,
and prudent evaluation of algorithmic
performance.

Generally speaking, the findings affirm the
superiority of DE over PSO in terms of accuracy
and convergence efficiency, with the DDM
emerging.
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