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ABSTRACT 

Accurate equivalent circuit parameter estimation for solar cells can significantly provide actionable 

insights for photovoltaic (PV) system designers. In this paper, we present a comparative analysis of two 

commercial PV modules, Jinko JKM365M (monocrystalline) and Canadian Solar CS3U-365PB-FG 

(polycrystalline bifacial), tested under distinct real-world environmental conditions, which were 

conducted under high irradiance with elevated temperature (1000 W/m², 65°C) and low irradiance with 

moderate temperature (200 W/m², 25°C). A rigorous preprocessing pipeline was applied to enhance data 

quality and ensure the reliability of the extracted parameters. Both Differential Evolution (DE) and 

Particle Swarm Optimization (PSO) were implemented in MATLAB and evaluated based on 

convergence behavior, Root Mean Square Error (RMSE), and alignment with manufacturer 

specifications. The key findings emphasized the performance of the optimization algorithms and the 

accuracy of the models. This study makes several noteworthy contributions to the field of photovoltaic 

modeling, particularly in the context of parameter estimation using field-measured data. One of the 

primary achievements lies in validating the efficacy of DE as a superior optimization algorithm for PV 

applications. The findings contribute to more accurate PV modeling, improved system diagnostics, and 

enhanced design and control of solar energy systems.  

Keywords: Photovoltaic (PV); Double diode model (DDM); Differential Evolution algorithm (DE); Particle 

Swarm Optimization algorithm (PSO).  

سرب الجسيمات   خوارزميةو التطور التفاضلي  يخوارزميسلوك التقارب ل مقارنة
للوحدات الكهروضوئيةبثنائيين معاملات الدائرة المكافئة لتقدير   

 1حسين محمد نوري  ،1احمد عجيلي حمزة 
 .ليبيا، سبها، سبهاجامعة  الهندسة،  المتجددة، كليةقسم الطاقات 1

ملخــــــــــــــــص البحــــــــــــــــــث 
أنظمة الطاقة الشمسية والتحكم فيها وتحسين أدائها، لا سيما في    هلنمذجيُعد التقدير الدقيق لمعاملات الخلايا الشمسية أمرًا بالغ الأهمية  

تم قياسها ميدانيًا، بالإضافة إلى تطبيق   I–V جهد  -منهجية محاكاة تعتمد على بيانات تيار   الورقةظل الظروف البيئية المتغيرة. تقدم هذه  
وقد تم اعتماد خوارزمية   من أكثر نماذج الخلايا الشمسية استخدامًا   .DDMين  نموذج الثنائيمتقدمة لاستخراج معاملات    بحتخوارزميات  

الجسيمات    DEالتفاضلي  التطور   تحسين سرب  استخدام خوارزمية  أساسي، مع  تحسين  إجراء    للمقارنة.  كمرجع  PSOكأسلوب  تم 
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-Canadian Solar CS3U-365PBالبلورة و أحادي    Jinko JKM365Mالاختبارات على لوحين شمسيين تجاريين من نوع 
FG    ( حقيقية.    65–25( ودرجات حرارة )²واط/م  1000– 200ثنائي الوجه متعدد البلورات، تحت ظروف إشعاع شمسي )درجة مئوية

PSOو  DEكما طُبقت خطوات معالجة مسبقة صارمة على البيانات لضمان جودتها وموثوقية النتائج المستخلصة. تم تنفيذ كل من  
التربيعي  MATLABفي بيئة   الجذر  توافق النتائج مع    ومدى   RMSEالمتوسط  ، وتم تقييم أدائهما بناءً على سلوك التقارب وخطأ 

من حيث الدقة والموثوقية، لا سيما    PSOتفوقت بشكل ملحوظ على   DEأظهرت النتائج أن خوارزمية    مواصفات الشركات المصنعة. 
ن  في ظروف الإشعاع المنخفض ودرجات الحرارة المرتفعة. وتُعد المنهجية المقترحة إطارًا عامًا وفعّالًا يمكن تطبيقه على أنواع متعددة م

الشمسية، وتعزيز قدرات  تقنيات الألواح الشمسية وظروف التشغيل المختلفة. تسهم نتائج هذا البحث في تحسين دقة نمذجة الأنظمة  
 الكهروضوئية.التشخيص، ورفع كفاءة التصميم والتحكم في أنظمة الطاقة  

 . تجمع السربخوارزمية التفاضلي، خوارزمية التطور نموذج الدايود الثنائي، الخلايا الشمسية، تقدير المعاملات،  نمذجة  ة:لادالالكلمات 

1. INTRODUCTION

Photovoltaic (PV) solar energy is one of the 

promising technologies due to its ease of use 

and decreasing costs. The PV module consists 

of PV cells that convert sunlight directly into 

electricity, and their performance depends on 

the type of semiconductor materials used. PV 

panels are configured as series-parallel solar 

cells in order to control voltage and current 

output values, and their performance is affected 

by meteorological data such as solar irradiance 

and cell temperature[1].  

Parameter identification of the solar panel is 

crucial for optimizing performance and fault 

detection calculations. Single-diode (SD) and 

double-diode (DD) equivalent circuit can be 

extracted numerically from experimental 

current-voltage (I-V). Various numerical 

methods have been proposed for nonlinear 

optimization problems, such as Newton-

Raphson (NR) and heuristic techniques like 

Differential Evolution (DE) and Particle Swarm 

(PS)[2].  

Much research is being done in order to 

extract the solar cell parameters, for example an 

optimized SDM approach is proposed in [3] for 

parameter extraction. This method was tested 

on the commercial KC200GT solar cell and the 

CS6K-280M polycrystalline module, using the 

Sooty Tern Optimization Algorithm (STOA).  

Triple Diode Model (TDM) on polycrystalline 

modules is discussed in [4], while [5] focused 

on monocrystalline modules with SDM, but 

neither provided a comparative analysis of the 

two technologies under varying irradiance and 

temperature conditions, a gap that affects 

understanding technology-specific behavior.  

An enhanced differential evolution (EDE) 

algorithm for parameter extraction in 

photovoltaic (PV) models, including SDM, 

DDM, and TDM, is presented in [5]. Their 

study applied the EDE method, using 

experimental I-V data collected under real 

irradiance and temperature conditions. 

The results in [5] showed a significant reduction 

in modeling errors, achieving an RMSE of 

0.008123 under standard test conditions (STC). 

The authors argued that such an approach could 

better capture the nonlinear behavior of PV 

cells, particularly under low irradiance or high 

temperatures. Moreover, the EDE algorithm in 

[5] demonstrated improved convergence and a

significant reduction in RMSE, achieving an

RMSE of 0.00789 compared to 0.00912 with

traditional differential evolution, highlighting

its robustness in handling nonlinear PV

characteristics.



Ahmed Hamza & Mohamed Hussin 644 

 J Technol Res. 2025;3:642-648.  https://jtr.cit.edu.ly 

It can be noted that some studies compare the 

performance of optimization algorithms like DE 

and PSO, such as in [6], and a few conduct 

systematic comparisons across a wide range of 

environmental conditions, particularly at low 

irradiance levels (e.g., 200 W/m²). Parameter 

estimation under low irradiance poses 

significant challenges due to reduced signal 

clarity, yet this scenario remains underexplored 

in the literature, limiting the robustness of 

current methods. This study utilizes 

experimentally measured I-V curves, rather 

than simulations. Such activities are expected to

enhance the accuracy and practicality of PV 

modeling, thereby facilitating the development 

of solar energy systems under real-world 

conditions. 

2. SYSTEM MODEL

This study investigates two commercial 

photovoltaic modules—Jinko JKM365M 

(monocrystalline) and Canadian Solar CS3U-

365PB-FG (polycrystalline bifacial), chosen for 

their technological diversity and prominence in 

current PV markets [7], [8]. 

2.1 Equivalent Circuit Models 

The SDM captures the basic nonlinear I-V 

behavior using a current source, a diode, series 

resistance (Rs), and shunt resistance (Rp). To 

improve accuracy, the DDM adds a second 

diode to account for additional recombination 

effects in the depletion region. The circuit 

representations shown in Fig. 1 form the 

analytical foundation for modeling photovoltaic 

behavior. 

Fig 1. Electrical equivalent circuit of a DDM. 

The terminal voltage (V) and output current (I) 

obey the equation. 

𝑰    = 𝑰𝒑𝒉 − 𝑰𝟎 [𝒆𝒙𝒑 (
𝒒(𝑽 + 𝑰𝑹𝒔)

𝒂𝒌𝑻
)  − 𝟏]

−
𝑽 + 𝑰𝑹𝒔

𝑹𝒔𝒉

 (𝟏). 

Where a, is the diode ideality constant, q is the 

electron charge, k is Boltzmann’s constant, and 

T is the temperature of the P-N junction in 

Kelvin’s, and Ipv is the photovoltaic current. The 

current–voltage relationship for the DDM is 

defined by the equation: 

𝑰 = 𝑰𝒑𝒉 − 𝑰𝟎𝟏 [𝒆𝒙𝒑 (
𝒒(𝑽 + 𝑰𝑹𝒔)

𝒂𝟏𝒌𝑻
)  − 𝟏]

− 𝑰𝟎𝟐 [𝒆𝒙𝒑 (
𝒒(𝑽 + 𝑰𝑹𝒔)

𝒂𝟐𝒌𝑻
) − 𝟏]

−
𝑽 + 𝑰𝑹𝒔

𝑹𝒔𝒉

 (𝟐). 

This model introduces two additional 

parameters compared to the SDM namely, I₀₂ 

and a₂, totaling seven parameters. Although this 

increases computational complexity, it 

significantly enhances the model’s accuracy in 

simulating PV cell behavior under varying 

environmental conditions, such as low 

irradiance or high temperatures. 

2.2 Optimization Parameters 

Equations (1,2) constitute a nonlinear, multi-

variable optimization problem. The inherent 

complexity arises from the exponential nature 

of the governing equations, which results in 

multiple local minima. The objective of 

optimization is to minimize the RMSE between 

measured (Ie) and modeled (Ip) currents: 

𝑹𝑴𝑺𝑬 = √
𝟏

𝑵
∑ (𝑰𝒆,𝒊 − 𝑰𝒑,𝒊)

𝟐𝑵
𝒊=𝟏  (3) 

The optimization variables in equations (1,2) 

are: 

𝑺𝑫𝑴: 𝜽𝑺𝑫𝑴 = {𝑰𝒑𝒉, 𝑰𝒐, 𝑹𝒔, 𝑹𝒑, 𝒂}  (𝟒) 

𝑫𝑫𝑴: 𝜽𝑫𝑫𝑴 = {𝑰𝒑𝒉, 𝑰𝒐𝟏, 𝑰𝒐𝟐 , 𝑹𝒔, 𝑹𝒑, 𝒂𝟏, 𝒂𝟐} (𝟓)
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2.3 Optimization Algorithms 

A rugged search landscape motivates this study 

to adopts metaheuristic optimization 

algorithms, which are particularly well suited 

for navigating non-convex, high-dimensional 

search spaces without requiring gradient 

information. Among the various approaches 

available, DE and PSO were selected for their 

robustness, ease of implementation, and 

documented success in photovoltaic modeling 

contexts. 

2.3.1 Optimization Setup for DE 

DE is a population-based, stochastic 

optimization algorithm designed to efficiently 

explore complex, multi-dimensional search 

spaces. The algorithm begins by randomly 

initializing a population of candidate solutions, 

each representing a potential parameter 

vector 𝑿𝒓,𝒈. It then iteratively refines the 

population through three core operations: 

mutation, crossover, and selection [9]. The 

velocity can be updated in Mutation operation 

as:  

𝑽𝒊,𝒈 = 𝑿𝒓𝟏,𝒈 + 𝑭(𝑿𝒓𝟐,𝒈 − 𝑿𝒓𝟑,𝒈).  (6) 

This exploration-exploitation trade-off is 

managed by the DE control parameters: the 

mutation factor (F), the crossover rate (CR), and 

the population size. These parameters must be 

optimized so that the algorithm converges and 

does not stagnate. Therefore, for DDM 

configuration: Population size: 𝑵𝒑 = 𝟕𝟎 (10 

times the 7 parameters), with identical 𝑭 = 0.85 

and 𝑪𝑹 = 𝟎. 𝟔. Termination: stops after 2000 

generations or if RMSE improvement falls 

below 𝟏 × 𝟏𝟎−𝟕 for 100 consecutive

generations. 

2.3.2 Optimization Setup for PSO 

 PSO is a population-based optimization 

algorithm inspired by the collective behavior 

observed in bird flocks and fish schools. The 

algorithm begins by randomly initializing a 

population of candidate solutions, each 

representing a potential parameter vector. The 

following equations mathematically define how 

the algorithm proceeds step by step and the 

velocity and position for every particle are 

calculated using two guidance components: the 

best position (pbest), and the global best 

position (gbest) experienced so far by the 

swarm[10], 

𝑣𝑖(𝑡 + 1) = 𝑤𝑣𝑖(𝑡) + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡 − 𝑥𝑖(𝑡))

+ 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖(𝑡)) 𝑥𝑖(𝑡

+ 1)

= 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1)  (7) 

For DDM Configuration, Population size is set to: 

𝑁𝑝 = 140, using the same 𝑤 = 0.7, 𝑐1 = 𝑐2 = 2.

Termination: Stops after 2000 generations or if 

RMSE improvement falls below 1 × 10−7 for 100 

consecutive generations [5]. 

3. MEASUREMENT TECHNIQUES

Accurate parameter estimation of PV models 

relies heavily on the quality and reliability of 

experimental current-voltage (I–V) data. 

3.1 Field Data Collection 

Measurements were conducted using portable 

I–V curve tracers in conjunction with a range of 

temperature measurement devices, including 

conventional thermometers, laser-based 

sensors, and thermocouples, to accurately 

record ambient temperature and PV module 

surface temperature. Additionally, dedicated 

instruments were employed to measure real-

time solar irradiance. This integrated setup 

enabled synchronized acquisition of both 

electrical and environmental data under natural 

sunlight conditions. For measurement diversity 

to simulate various operational states of PV 

modules, I–V data were collected under a broad 

range of irradiance levels (e.g., 200–1000 

W/m²) and temperatures (25–65°C). This range 

ensures the models are tested for robustness 

under both ideal and suboptimal conditions. 
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3.2 Preprocessing and Filtering 

The collected data were subjected to noise 

reduction techniques, including moving 

average smoothing and outlier removal based 

on statistical thresholds. Additionally, 

weighting techniques were applied to mitigate 

bias toward data clusters in more frequent 

operating regions. [11] presented a data-

driven approach for extracting key features 

from field-measured I–V curves of 

photovoltaic modules, with an emphasis on 

improving parameter estimation accuracy 

through preprocessing. Their method employs 

linear regression and spline-based smoothing 

techniques to mitigate noise and distortions 

commonly observed in real-world I–V data. 

4. RESULTS AND DISCUSSION

This section may be divided into subheadings or 

combined.  A combined results and discussion 

section is often appropriate.  This should 

explore the significance of the results of the 

work; don’t repeat them. Avoid extensive 

citations and discussions of published literature. 

4.1 Extracted DDM parameters 

Table 1 demonstrates the superior performance 

of Differential Evolution (DE) over Particle 

Swarm Optimization (PSO) in estimating 

Double-Diode Model (DDM) parameters under 

extreme operating conditions. For the Jinko 

JKM365M module at 1000 W/m² and 65°C, DE 

achieves more accurate photocurrent estimation 

(9.75 A, closely matching the short-circuit 

current of 9.75 A), lower saturation currents 

(5.0×10⁻⁹ A and 2.0×10⁻⁸ A), and optimal 

ideality factors (1.20 and 1.80, respectively).  

In the case of the Canadian Solar CS3U-365PB-

FG module under 200 W/m² at 25°C, DE 

provides precise photocurrent values (2.10 A) 

and higher shunt resistance (700 Ω), indicating 

reduced current leakage. These results show 

excellent agreement with manufacturer 

specifications and are consistent with previous 

studies [6]. The comparative analysis highlights 

DE's robustness in parameter extraction across 

different photovoltaic technologies and 

operating conditions. 

4.2 Error Metric 

Table 2 summarizes the error metrics for the DE 

algorithm applied to the DDM across various 

operating conditions and photovoltaic (PV) 

module types. The results demonstrate DE’s 

high accuracy, with RMSE values ranging from 

0.0141 to 0.0210 and R² values consistently 

exceeding 0.995, indicating an excellent fit 

between measured and modeled I-V curves. At 

high irradiance (1000 W/m², 65°C), DE 

achieves lower RMSE (0.0141 for 

monocrystalline, 0.0165 for polycrystalline) 

and extremely low MBE (4.908×10⁻⁸ and -

9.500×10⁻⁸, respectively), confirming 

negligible systematic bias. at low irradiance 

(200 W/m², 25°C), RMSE increases slightly 

(0.0210 for monocrystalline, 0.0205 for 

polycrystalline) with higher MBE (1.500×10⁻³ 

and 2.000×10⁻³), reflecting increased 

experimental noise and challenges in modeling 

PV behavior under low light, as can be seen in 

[6].  

4.2 Convergence Behavior Analysis of DE 

and PSO Algorithms 

This section presents the convergence curves 

for the DE and PSO algorithms applied to the 

DDM under two operating conditions: 1000 

W/m², 65°C (high irradiance) and 200 W/m², 

25°C (low irradiance). The following figures 

present the convergence curves to support this 

analysis. 

Under high irradiance conditions (1000 W/m², 

65°C) using monocrystalline panels., DE 

required about 1480 generations to converge 

with an RMSE of 0.014, while PSO converged 

in approximately 800 generations with a higher 

RMSE of 0.018, indicating a trade-off between 

speed and accuracy. 
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Fig 2. Convergence curves of DE and PSO for 

DDM models under 1000 W/m², 65°C. 

Fig 3. Convergence curves of DE and PSO for 

DDM models under 200 W/m², 25°C. 

Table 1. Comparison of DDM Parameters Between DE and PSO. 

Condition Algo. 𝑎₁ 𝑎₂ 𝑹s (Ω) 𝑹p (Ω) 𝑰ph (A) 𝑰ₒ₁ (A) 𝑰ₒ₂ (A) 

1000 W/m², 

65°C, Mono-

cry 

DE 

1.20 1.80 0.23 900 9.75 5 × 10⁻9 2 × 10⁻⁸ 

200 W/m², 

25°C, Poly-

cry. 

PSO 

1.25 1.85 0.24 850 9.72 8 × 10⁻9 2.5×10⁻

⁸ 

Table 2. Error Metrics for the DE. with DDM Configuration. 

Condition PV Type RMSE MBE R² 

1000 W/m²,

65°C 

Mono-

crystalline 0.0141 4.908×10⁻⁸ 0.99998 

1000 W/m²,

65°C 

Poly-

crystalline 0.0165 -9.500×10⁻⁸ 0.99989 
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Similarly, Fig. 2 shows the convergence curves 

under low irradiance (200 W/m², 25°C) using 

polycrystalline panels, requiring about 480 

generations with an RMSE of 0.020, compared 

to PSO’s 325 generations and RMSE of 0.03. 

As shown in the figures, DE exhibits smoother 

and more stable convergence compared to PSO. 

5. CONCLUSIONS

This study concludes with a comprehensive 

evaluation of parameter estimation techniques 

for photovoltaic (PV) modules, drawing on 

field-measured current-voltage (I-V) data to 

model two distinct PV technologies under 

varying environmental conditions. The study 

employed Differential Evolution (DE) as the 

primary optimization algorithm, with Particle 

Swarm Optimization (PSO) serving as a 

benchmark, to extract parameters for Double-

Diode Model (DDM). The DDM, despite its 

superior accuracy, brings with it a 

computational burden; therefore, finding a 

middle ground between precision and 

processing speed continues to be a critical area 

needing further exploration. 

Even though this study offers an elaborate 

assessment of PV parameter estimation 

techniques, the following limitations apply: 

Environment Coverage, Quality of Data, 

Algorithmic Constraints, and Assumptions of 

the Model. These limitations are offset by 

extensive data preprocessing, datasheet 

benchmarking of PV module manufacturers, 

and prudent evaluation of algorithmic 

performance. 

Generally speaking, the findings affirm the 

superiority of DE over PSO in terms of accuracy 

and convergence efficiency, with the DDM 

emerging. 
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