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ABSTRACT

This research explores the application of Contrast-Limited Adaptive Histogram Equalization (CLAHE)
as a technique for enhancing the visual quality and diagnostic utility of liver Positron Emission
Tomography (PET) images. PET scans are widely used in nuclear medicine to detect metabolic activity,
such as tumors, but they often suffer from poor contrast and lack sufficient anatomical detail. By
applying CLAHE, we aim to improve local contrast in PET images, making tumor regions more
distinguishable without amplifying noise. To validate and precisely localize the tumor boundaries,
RTSTRUCT data provided delineated regions of interest (ROIs), which were extracted and overlaid on
the corresponding CT slices. This step enabled both validation of the segmentation and clear anatomical
localization of the target structure. The study integrates CLAHE-enhanced PET images with these
corresponding Computed Tomography (CT) scans to fuse functional and anatomical information. The
fusion of PET and CT allows for clearer tumor localization, which is critical for accurate diagnosis and
treatment planning, particularly in patients undergoing Yttrium-90 (Y-90) radioembolization therapy for
liver cancer “The publicly available Y-90 PET/SPECT/CT dataset used in this study contains four
anonymized patients, with no demographic identifiers such as age or gender”. The effectiveness of
different CLAHE parameters was evaluated using quantitative metrics such as entropy, Structural
Similarity Index Measure (SSIM), and Peak Signal-to-Noise Ratio (PSNR) demonstrating an
improvement of 23.7%, 1.1%, and 2.0 dB, respectively, compared to the original PET/CT images. These
results indicate that optimized CLAHE effectively enhance image contrast and tumor boundary clarity
while preserving structural fidelity, suggesting potential utility in improving PET/CT fusion accuracy
for hepatic oncology applications.
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1. INTRODUCTION

Mostly Medical imaging is a cornerstone of
modern healthcare, fundamentally shaping how
we diagnose, plan treatment for, and monitor
complex diseases like cancer [1]. Each imaging
technique offers a unique lens into the human
body. For instance, Positron Emission
Tomography (PET) excels at revealing
metabolic activity, effectively highlighting
potentially cancerous regions based on their
increased biological function [2]. However, a
significant drawback of PET is its poor
anatomical detail, making it difficult to pinpoint
exactly where that activity is occurring. This is
where Computed Tomography (CT) provides a
critical counterpart, offering a high-resolution,
three-dimensional map of the body's internal
structures [3]

Yet, when used in isolation, each modality has
its own Achilles' heel. Standard PET images
often suffer from low contrast and high noise,
which can obscure the very tumor boundaries
clinicians need to see clearly [4]. Conversely,

while CT provides excellent anatomical
context, it frequently struggles to differentiate
between tumors and healthy soft tissues with
similar density, causing lesions to blend into
their surroundings [5]. This lingering
challenge—the need to make tumors stand out
with greater clarity against complex anatomical
backgrounds—remains a central and driving
focus in the field of medical image processing.
. As a result, neither PET nor CT alone provides
optimal clarity of the tumor’s size, boundaries,
and location. Therefore, there is a need for
overcome this problem of both modalities to
enhance tumor visibility and provide reliable
diagnostic support.

Image contrast enhancement techniques offer a
potential solution to this problem. Among these,
CLAHE is a highly effective method for
improving local contrast in medical images
without excessively amplifying noise [6]. While
CLAHE has been successfully applied to
various modalities like MRI [7] and CT [8], its
application to PET imaging, and specifically to
liver PET for oncology, remains relatively
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underexplored. Most literature focuses on its
use for visual appeal or general contrast
improvement, with less emphasis on its role in
improving the fidelity of multi-modal image
fusion for precise clinical tasks.

In this work, a modified CLAHE preparation
method specifically designed for the Y-90
dataset —a well-known dataset for liver
tumor—is applied. Our objective is to
determine if, in comparison to traditional
CLAHE and the original, unprocessed Y-90
images, the modified CLAHE approach may
further improve image quality and outline
boundaries.

We use evaluation techniques such as PSNR,
SSIM, and Entropy to measure image quality.
PSNR quantifies the error between the original
and processed image, SSIM evaluates structural
and perceptual similarity, while Entropy
reflects the amount of information content
within the image.

However, CLAHE has not been quantitatively
validated for liver PET/CT fusion in Y-90
datasets, which represents a critical gap in
current literature.

It is hypothesized that optimized CLAHE
parameters (tile size 8x8&, clip limit 0.01) will
significantly improve PET image contrast and
tumor boundary clarity compared to
unprocessed PET images.

This study aims to bridge this gap by
investigating the application of CLAHE to liver
PET scans to enhance tumor visibility and
improve the accuracy of PET/CT fusion. The
core objectives are:

1. To optimize CLAHE parameters (clip limit
and tile size) specifically for liver PET images
to maximize tumor contrast while preserving
critical diagnostic information.

2. To develop and implement an automated
pipeline for fusing the CLAHE-enhanced PET
images with their corresponding CT slices.

3. To quantitatively evaluate the enhancement
using image quality metrics (Entropy, SSIM,
PSNR) and qualitatively assess the
improvement in tumor localization -clarity

against manually delineated Regions of Interest
(ROIs) from RTSTRUCT data.

2. MATERIALS AND METHODS

his study was conducted for four patients named
patient A, Patient B, Patient C, Patient D using
Y-90 PET and CT images, However, a
significant limitation of PET is its inherently
poor spatial resolution and lack of detailed
anatomical information as shown in Fig 1. This
often makes it difficult to precisely localize
metabolic hotspots within specific organs or to
distinguish pathological uptake from adjacent
physiological activity [3].
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Fig 1. Random PET slice of each patient.

On the other hand, using CT alone for detecting
any tumor isn’t fully sufficient and does not
provide the full tumor information as shown in
Fig 2. as CT scans focuses primarily on the
anatomical map of the body rather than the
tumor structure itself.
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Patient B

Fig 2. Random CT slice of each patient.

To overcome this limitation, the integration of
PET with CT has become the clinical gold
standard. CT provides high-resolution, cross-
sectional anatomical maps of the body's internal
structures. The fusion of PET's metabolic data
with CT's anatomical framework in a combined
PET/CT system allows for the precise co-
registration of function and structure,
significantly improving diagnostic accuracy
and confidence [9]. This synergy is particularly
critical in complex anatomical regions like the
abdomen. Despite the advantages of PET/CT,
the inherent low contrast and high noise levels
in the PET component can still obscure subtle
lesions, such as small or hypometabolic liver
tumors. While the CT scan provides a clear
anatomical landscape, the PET data must be of
sufficient quality to allow for a clear and
unambiguous overlay of metabolic activity onto
this landscape. In clinical practice, particularly
for procedures like Y-90 that require precise
tumor targeting, the faint appearance of a tumor
in a standard PET image can complicate
treatment planning [10]. The metabolic activity
1s visible, but its exact boundaries and
relationship to critical vascular structures of the
liver parenchyma remain uncertain.

To overcome these issues a certain process is
conducted, Fig 3. Shows an overall block
diagram of a liver enhancement process.

Fig 3. Overall block scheme of liver enhancement
process.

This process was conducted for four patients all
diagnosed with hepatic malignancies treated
with Y-90 radioembolization. Each patient’s
PET/CT study consisted of 120-150 axial
slices, depending on the scan field-of-view. All
slices were processed to preserve volumetric
integrity. SSIM, PSNR, and Entropy were
computed on a per-slice basis and averaged
across all slices for each patient.

beginning with sorting the image slices of both
PET and CT images to Maintain volumetric
integrity. It is paramount because the spatial
relationship between consecutive slices defines
the three-dimensional morphology of the
anatomical and functional structures under
investigation. The DICOM standard itself
specifies spatial positioning metadata (e.g.,
Image Position Patient, Slice Thickness) that
defines a continuous coordinate system for the
image volume. This spatial context is the very
foundation of medical image analysis.

The second step is to extract key parameters of
the first PET file, including the image
dimensions (Rows, Columns) and the total
number of slices. This information is used to
preallocate 3D matrices for computational
efficiency.

Each CT slice is similarly read. However, to
achieve voxel-wise spatial correspondence with
the PET data for accurate fusion, each CT slice
is resampled to the PET slice dimensions. This
step is crucial as PET and CT acquisitions often
have different resolutions and fields of view.
Here where the contrast image enhancement
occurs.

To avoid over-enhancement in each tile,
CLAHE applies histogram equalization with a
contrast limit after dividing the picture into tiny
pieces, or tiles.
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Photon randomness causes noise in photo
graphs, which can change depending on the
intensity of the light. While picture smoothing,
median filtering, and component removal are
examples of algorithms that can help decrease
noise, they can also eliminate important
information.[11] Consequently, the features of
the picture are used to determine the noise-
reduction techniques.

Two key factors that determine how successful
CLAHE is:

1. The number of divisions in the picture
is determined by the number of tiles
(NT) which is the same as tile size.

2. The histogram peak higher threshold is
set by the contrast limit (CL).

By carefully adjusting the NT and CL
parameters for medical pictures, we created a
modified version of the CLAHE algorithm, as
shown in Fig 4. And fig 5. We tried a variety of
NT and CL values on the medical picture data
set to find the optimal trade-off between noise
reduction and contrast improvement. The
following parameter ranges were tested:

NT: Range (2,24) with 8 step size (8*8 tile size)

CL: Range (0,1) with a step size of 0.01. We
experimented with different NT and CL
values to improve these parameters for a
medical picture data set.

The overlaying shown in Fig 6. was performed
not by a simple operation, but through a
rigorous pipeline of spatial registration,
intensity normalization, advanced contrast
enhancement, and perceptually optimized alpha
blending. This produces a fused image where
high metabolic activity from PET is intuitively
color-coded and precisely localized within its
corresponding anatomical context from CT,
providing a powerful tool for diagnostic
interpretation.
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Patient B

Ovigingd |Laft) wa. CLAME Enhasces (Soght

Patient C

Oviginad (Left) wa CLAMNE B hanced (Fight)
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Fig 4. Applying CLAHE to a random CT
slices

this is only one slice sample of originally 122
slices for each patient, you can see clearly the
radiant part (the tumor) is the PET scan image,
and with integrating it with CT scan image (the
organs), we successfully allocate the tumor,
making each image more presentable and easier
to process.

We also provide a medical imaging
visualization pipeline for displaying expert-
annotated anatomical contours over computed
tomography (CT) data.

The core functionality involves iterating
through each contour within the selected ROI,
converting its 3D spatial coordinates from the
DICOM coordinate system to 2D pixel indices
using the CT's geometric properties, and
precisely overlaying the resulting contour lines
onto their corresponding CT slices. This creates
an interactive visualization where each contour
is sequentially displayed on its matched CT
slice, enabling direct wvalidation of the
anatomical accuracy of the segmented
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structures against the original imaging data
through manual progression.

&
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Fig 5. Applying CLAHE to a random PET slices.

In Fig 7. We display 12 slices of this process out
of 153 slices of patient A, were the liver is
perfectly highlighted.

This study implemented a two-phase analytical
pipeline. First, PET images were enhanced
using CLAHE to improve tumor contrast and
then fused with unaltered CT scans for precise
metabolic-anatomical localization. Second,
expert-delineated  tumor  contours  from
RTSTRUCT data were geometrically projected
onto CT slices to establish validation ground
truth. This integrated approach ensures all
subsequent analyses are performed on a
rigorously processed and validated dataset.

1 A
PP —

Fig 6. Fused PET/CT Overlay Image.

Fig 7. Liver Contour Projection on CT (Patient A).
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3. RESULTS AND DISCUSSION

A comparative quantitative analysis was
performed to evaluate the efficacy of Contrast-
Limited Adaptive Histogram Equalization
(CLAHE) under varying parameter
configurations. The original image served as the
baseline for all comparisons. Key image quality
metrics were employed to provide a
multifaceted  assessment:  Entropy  was
calculated to quantify the enhancement in
information content and textural complexity;
the SSIM and PSNR were utilized to evaluate
the preservation of structural fidelity and the
level of introduced distortion, respectively; and
histogram distribution analysis was conducted
to visualize the redistribution of pixel intensities
and the resulting contrast spread across the
dynamic range.

Table 1. Quantitative Comparison of CLAHE
Parameter Sets.

Metric Original | CLAHE1 | CLAHE 2

Entropy | 1.4513 1.7948 1.7793

SSIM _ 0.9250 0.9356
PSNR _ 27.99 28.54
dB dB

CLAHE 2 indicates the optimal metrics for all
Y-90 images, were CLAHE 2 was implemented
with random metrics for comparison.

This table evaluates the original image and two
different metrics of both NT and CL.

CLAHE 1 has NT of 16, CL of 0.01.

CLAHE 2 has NT OF 8, CL of 0.5.

3.1. Quantitative Analysis of CLAHE Image
Enhancement Results

3.1.1. Entropy Analysis :

Both CLAHE configurations produced a
substantial increase in image information
content, indicating significantly enhanced detail
and local contrast. CLAHE 1 achieved a
marginally higher entropy gain with 23.7%
increase compared to CLAHE 2 that noticed a

22.6% increase, suggesting slightly better
revelation of texture and detail.

3.1.2. Structural Similarity Analysis :

Both values are high (optimal value is 1.0),
demonstrating excellent preservation of the
original image's structural integrity. CLAHE 2
performed slightly better in maintaining the
structural features of the original image,
indicating less structural distortion from the
enhancement process.

3.1.3. Peak Signal-to-Noise Ratio Analysis :

Both values are considered good for image
processing tasks (values above 25 dB are
generally acceptable). CLAHE 2 achieved a
higher PSNR, that minimize distortion and
noise introduced by the enhancement algorithm.

CLAHE 2: Achieved a more balanced and
superior overall performance. It provided an
excellent improvement in entropy, while also
delivering the best scores in structural fidelity
(SSIM) and noise reduction (PSNR).

CLAHE 2 is the recommended parameter set. It
provides a better trade-off, maximizing contrast
enhancement and information content while
best preserving the structural integrity of the
original image and minimizing undesirable
distortion. This balance is crucial for clinical
applications where diagnostic reliability is
paramount.

3.1.4. Histogram analysis :

Original : The histogram is highly skewed with
narrow pixel intensity range — typical of low-
contrast PET images.

CLAHE 1 & 2 : The histograms show improved
distribution, especially at the high intensity
(right tail), indicating enhanced contrast and
better utilization of the dynamic range.
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Fig 7. Comparative Histogram Analysis of CLAHE
Enhancement.

Based on qualitative assessment, the CLAHE 1
parameters resulted in slight over-enhancement
and were consequently discarded. The CLAHE
2 parameters, with a clip limit of 0.01 and a tile
size of 8x8, were selected for all subsequent
analysis as they provided optimal contrast
improvement without introducing undesirable
artifacts.

4. CONCLUSIONS

This study successfully demonstrated the
significant value of CLAHE in enhancing the
diagnostic quality of liver PET scans for
improved tumor localization. A robust and
automated processing pipeline was developed

and rigorously applied to a complete clinical
dataset, encompassing all 112 slices per
modality for each of the four patients in the Y-
90 radioembolization cohort. The systematic
application of this pipeline confirmed that the
optimized CLAHE parameters (clip limit =
0.01, tile size = 8x8) consistently yielded
excellent enhancements across the entire patient
cohort.

The quantitative evaluation, based on entropy,
SSIM, and PSNR metrics, conclusively showed
that the CLAHE-enhanced PET images
possessed significantly higher information
content and improved local contrast while
maintaining strong structural fidelity to the
original data. Qualitatively, the fusion of these
enhanced PET images with their corresponding
CT scans provided a clear and intuitive
visualization, enabling precise anatomical
localization of metabolic hotspots that were
often subtle or poorly defined in the original
PET scans.

this work establishes CLAHE as a powerful and
reliable pre-processing step for liver PET/CT
analysis. The consistent improvements
observed across all patients and slices
underscore the method's robustness and its
potential for direct clinical integration. By
providing clearer tumor boundaries and more
confident localization, this approach can
directly support radiologists and clinicians in
diagnostic interpretation, treatment planning,
and monitoring for patients undergoing
therapies like Y-90 radioembolization,
ultimately contributing to more personalized
and effective patient care.

Future work

The study is limited by the small patient
cohort and the lack of multi-center
validation, which may affect the
generalizability of the findings. Future work
should include larger datasets and external
validation to strengthen the clinical
applicability of the results.
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It will focus on validating this pipeline on a
larger,  multi-institutional ~ dataset  and
integrating it with deep learning-based
segmentation models to create a fully automated
system  for liver tumor  detection,
characterization, and treatment response
assessment.

5. ACKNOWLEDGMENT

I wish to extend my sincere gratitude and
appreciation to Raneem Mohammed Ali
Khalafullah for her invaluable support and
expertise throughout this research. Her
willingness to consistently answer questions
and provide insight from the perspective of a
radiology specialist was instrumental in
grounding this work in clinical practice.

REFERENCES

[1] Frija, G.; Blazi¢, L.; Frush, D. P.; Hierath, M.;
Kawooya, M.; Donoso-Bach, L.; European
Society of Radiology (ESR). How to Improve
the Value of Medical Imaging? Insights from
the ESR. Insights Imaging 2021, ¥12*, 1-8.

[2] Townsend, D. W. Multimodality Imaging of
Structure  and  Function. Phys.  Med.
Biol. 2008, *53* R1.

[3] Beyer, T.; Townsend, D. W.; Brun, T
Kinahan, P. E.; Charron, M.; Roddy, R.; Nutt,
R. A Combined PET/CT Scanner for Clinical
Oncology. J. Nucl. Med. 2000, *41*, 1369-
1379.

[4] Rahmim, A.; Zaidi, H. PET versus SPECT:
Strengths, Limitations and Challenges. Nucl.
Med. Commun. 2008, *29%*, 193-207.

[S] Kalender, W. A. X-Ray Computed
Tomography. Phys. Med. Biol. 2006, *51%,
R29.

[6] Zuiderveld, K. Contrast Limited Adaptive
Histogram Equalization. In Graphics Gems 1V
Heckbert, P., Ed.; Academic Press: Cambridge,
MA, 1994; pp 474-485. DOI: 10.1016/B978-0-
12-336156-1.50061-6.

[7] Pizer, S. M.; Amburn, E. P.; Austin, J. D,;
Cromartie, R.; Geselowitz, A.; Greer, T,
Zuiderveld, K. Adaptive  Histogram
Equalization and Its Variations. Comput.
Vision Graph. Image Process. 1987, *39%,
355-368. DOI: 10.1016/S0734-
189X(87)80186-X.

[8] Reza, A. M. Realization of the Contrast
Limited Adaptive Histogram Equalization

(CLAHE) for Real-Time Image
Enhancement. J. VLSI Signal
Process. 2004, *38%*, 35-44. DOI:

10.1023/B:VLSI.0000028532.53893.82.

[9] Purohit, B. S.; Ailianou, A.; Dulguerov, N.
FDG-PET/CT Pitfalls in Oncological Head and
Neck Imaging. Insights Imaging 2014, *5*
585-602.

[10] Budzynska, R. PET/CT and SPECT/CT
Imaging of Y-90 Hepatic Radioembolization at
Therapeutic and Diagnostic Activity Levels:
Anthropomorphic ~ Phantom  Study. PLOS
ONE 2024, *19%, e0271711.

[11] Buriboev, A. S.; Khashimov, A.; Abduvaitov,
A.; Jeon, H. S. CNN-Based Kidney
Segmentation Using a Modified CLAHE
Algorithm. Sensors 2024, *24*, 7703.

J Technol Res. 2025;3:721-729.

https://jtr.cit.edu.ly



