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ABSTRACT

Accurate forecasting of short-term load and spinning reserve is essential for ensuring the secure operation
of power systems, facilitating effective electricity generation and demand-side management. This paper
introduces an innovative hybrid forecasting approach, integrating Long Short-Term Memory (LSTM)
networks and Adaptive Neuro-Fuzzy system (ANF) models, optimized by a Dynamic Bacterial Foraging
algorithm (DBFO). The LSTM model is best suited for detecting time-series patterns, but the ANF system
contains fuzzy logic and ANN to be able to handle uncertainty and nonlinearity of data. The DBFO
algorithm adjusts the hyperparameters of the two models by dynamically adjusting essential parameters
according to changes in the environment. Extensive testing on actual power system data confirms that the
proposed hybrid models perform better than conventional approaches, providing robust and reliable
predictions for load and spinning reserve. Comparative studies with traditional machine learning tools and
existing optimization algorithms also reinforce the superiority of the proposed methodology.

Keywords: Adaptive Neuro-Fuzzy system (ANF), Dynamic Bacterial Foraging algorithm (DBFO), Long Short-Term
Memory (LSTM), Power systems, Short-term load prediction, Spinning reserve.
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1. INTRODUCTION:

Load forecasting involves estimating future
power consumption across a specified
timeframe. Based on the time horizon, load
forecasting can be categorized as short-term,
medium-term, or long-term. For short-term load
forecasting, the prediction timeframe typically
ranges from one hour to several weeks [1]. STLF
and spinning reserve prediction are highly
important in the operation of power systems on a
daily basis. These predictions have an impact on
energy dispatch, reserve scheduling, and total
supply and demand balance [2]. The inherent
uncertainty in load and spinning reserve
forecasting lies in the very dynamic and non-
linear nature of power systems, which are
affected by multiple factors, such as weather,
seasonality, economic load, and customers'
behavior [3]. Load forecasting accuracy is
evidently influenced by the load uncertainty.
This is only logical because load forecasting
relies on historical records. Certain factors like
weather, political activities, and social activities
influence the correctness of the foregoing
forecasts [4]. Numerous methodologies have
been developed to tackle the load forecasting
issue. These could be broadly classified into two
categories [5]. The first category encompasses
statistical and  mathematical techniques,
including time series analysis, regression
modeling, and autoregressive integrated moving
average (ARIMA) methods [6]. The second
category includes heuristic, non-calculus-based
techniques, i.e., fuzzy logic [7], artificial NN [8],
and support vector machines [9-11]. Despite
their ease of use and simplicity, the statistical
methods are not very capable of handling the
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nonlinearities in load data patterns, which makes
their performance deteriorate when used for
complex, non-linear  systems.  Artificial
intelligence-based methods, however, have been
found to be more successful in handling such
non-linear data sets. Machine learning
techniques, particularly  Artificial Neural
Networks (ANNs) and support vector machines
(SVM), have attained enhanced accuracy
through their ability to capture and model
intricate non-linear relationships. Among these
advanced techniques, Long Short-Term Memory
(LSTM) networks have emerged as a preferred
choice for time series forecasting due to their
capability to capture long-term dependencies
within sequential data. Another advanced
machine learning method is the Adaptive Neuro-
Fuzzy system (ANF), which incorporates fuzzy
logic and ANNs to express uncertainty and
handle non-linearity. While LSTM and ANF
have been effective, selecting optimal
hyperparameters for these models remains an
enormous challenge. Optimization algorithms,
particularly nature-inspired approaches, have
been  drawing increased interest  for
hyperparameter  optimization. One  such
optimization technique is the Bacterial Foraging
Algorithm (BFO), which mimics the foraging
patterns observed in bacterial colonies. To
realize improved optimization performance, a
Dynamic Bacterial Foraging Optimization
Algorithm (DBFO) is put forward in this
research, in which the search parameters are
dynamically regulated to enhance convergence
and robustness. The main goal of the paper is to
introduce a developed hybrid model with LSTM
and ANF system using the DBFO for the
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optimization of hyperparameters of the LSTM
and ANF system for better short-term load and
spinning reserve prediction. Subsequently, the
proposed methodology is benchmarked against
conventional machine learning approaches,
including ARIMA, Support Vector Regression
(SVR), and static BFO algorithm-based models.
The subsequent sections of this paper are
organized as follows: Section II provides an
overview of short-term load and spinning reserve
forecasting, while Section III details the hybrid
models employed for forecasting. Section IV
introduces the proposed model. Simulation
results and conclusions are presented in Section
V and Section VI, respectively.

2. SHORT-TERM LOAD AND SPINNING
RESERVE FORECASTING

Precise short-term load and spinning reserve
forecasting is crucial for maintaining system
stability and minimizing operational costs [2].
Traditional short-term load forecasting methods,
including ARIMA and exponential smoothing
time-series models, are incapable of modeling
the complex, non-linear couplings in today's
power systems. Machine learning models,
including ANN, LSTM, and SVM, have
demonstrated improved forecasting performance
by modeling non-linearities and learning from
historical data over the last few years. Prediction
of spinning reserve, needed to provide stability to
the grid in the event of an unplanned generator
failure or increase in demand, has typically been
addressed using the same statistical and machine
learning techniques. Though load forecasting has
been extensively researched, spinning reserve
prediction is a less popular subject [2].

3. APPLIED HYBRID MODELS FOR
FORECASTING

Hybrid approaches combining the advantages of
two or more machine learning techniques have
become popular in power system prediction.
Among such hybrid approaches is the integration
of LSTM and ANF, which combines the
temporal learning potential of LSTM with the
fuzzy reasoning logic of ANF system. ANF
models are used where the system dynamics are

partially known so that they can handle
uncertainty and model complex relationships
effectively. Multi-layer LSTM networks are
proposed in the literature by authors in [12], and
they are highly effective at predicting variable
load data. A new deep ANN that combines
hidden features of Convolutional Neural
Networks (CNN) and LSTM models to enhance
prediction accuracy is introduced in [13]. The
study in [14] employs two distinct models—ANF
with Fuzzy-C-Means (FCM) clustering and
LSTM networks—for day-ahead renewable
electricity generation forecasting, with both
approaches yielding comparable results. Ref [15]
describes a hybrid method that combines a
Convolutional ANN with Multi-Layer Bi-
Directional LSTM (M-BLSTM) networks for
energy consumption forecasting, structured
across three hierarchical levels. The first is about
efficient preprocessing for data confirmation,
screening, and adjustment. The second is a
hybrid architecture combining CNN with an M-
BLSTM network that processes sequential input
data.

3.1. Optimization Algorithms for
Hyperparameter Tuning

The performance of machine learning models is
highly dependent on their hyperparameters and,
therefore, needs optimization to improve
prediction. BFO is an optimization algorithm that
draws inspiration from the foraging behaviour of
bacteria such as Escherichia coli. Fixed
parameters are used by traditional BFO
algorithms in the search process, which can limit
their adaptability to dynamic problems. Recent
contributions have proposed variants of BFOA
that vary their parameters dynamically during the
search process to achieve improved convergence
rate and solution quality. The DBFO adopted in
this work is grounded on these advances,
dynamic variation of key parameters according
to the fitness landscape.

3.2. Long Short-Term Memory (LSTM)
Networks

The LSTM network was originally proposed by
Hochreiter and Schmidhuber in 1997. It
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represents a specialized variant of Recurrent
(RNNs),
engineered to capture long-term dependencies
within sequential data.

Neural  Networks specifically

LSTMs address the vanishing gradient problem
prevalent in conventional RNNs through the
integration of memory cells that retain
information over extended temporal
sequences. The key advantage of this
architecture over a basic RNN is its gated
structure, as illustrated in Figure 1. Each LSTM
cell is composed of three distinct gates; input,
forget, and output, that collectively govern the
information flow within the network. Unlike
normal RNNs, which either repeat content at
each time step or simply sum up input signals and
pass them through activation functions, LSTM
networks naturally learn and remember
important information at a fundamental level.
This enables them to maintain long-term
dependencies by  forwarding  important
information without diminution. LSTMs also
possess a memory cell called the Cell-State (Ct)
that serves as long-term memory and is updated
at each time step. The Cell-State does two
significant operations: (1) removing irrelevant
information (the forget gate governs this) and (2)
appending new relevant information (the update
gate takes care of this). The output gate also
regulates the quantity of memory content carried
forward in the ultimate output. The connection
between input (Ct-1) and output (Ct) is carried
out through the entire sequence, preserving
ongoing information passage. Figure 1 illustrates
this mechanism [12, 16—18].

Ci-1—) | »Ct
Ne-iof R [ LSTM
T ht—l —> L ht

Fig 1. Schematic comparison of a basic RNN cell
(left) and an LSTM cell (right), highlighting the
internal gates (input, forget, output) and the cell state
(Ct) pathway that enable long-term dependency
learning.

For short-term load forecasting and reserve
forecasting, LSTM networks are well adapted to
detect temporal associations among historical
load data, weather, and the other parameters. The
standard LSTM is trained with backpropagation
through time (BPTT) minimizing MSE between
predicted and actual outputs.

3.3. Adaptive Neuro-Fuzzy (ANF) System

The ANF system is a hybrid approach, which
integrates fuzzy logic and ANNs, bringing
together the interpretability of fuzzy inference
systems and the learning capability of ANNS.
The ANF system is particularly suited for
systems with inherent uncertainty, where fuzzy
rules can model the imprecise and vague
relationships between variables. ANF system
method, introduced by Jang in 1993, was
designed as an adaptive and trainable
network. The ANF system typically consists of a
five-layer architecture, as shown in Figure 2,
which combines fuzzy logic membership
functions with the learning capability of a neural
network. Neural-fuzzy modelling defines the
system behaviour through fuzzy logic rules
within the framework of this adaptive network.
The initial layer, i.e., the fuzzy layer, employs
membership functions in order to calculate the
membership degree of each of the variables for
establishing a fuzzy system. The second layer,
i.e., the inference layer, is where the weight of
every function is acquired. The third layer, which
is the normalization layer, is where weights are
normalized. Once normalized, the weights are
computed in the fourth layer, where the ultimate
results are summed in the fifth layer. The nodes
in these layers can have fixed or trainable
parameters [14].
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Fig 2. General structure of a five-layer Adaptive
Neuro-Fuzzy Inference System (ANFIS).
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In this study, the ANF system is utilized to model
the non-linear interaction among input
parameters such as load, temperature, humidity,
and reserve demand. The fuzzy system of ANF
is constructed upon a Sugeno-type fuzzy model,
and rules are tuned with gradient descent and
backpropagation training.

3.4. Dynamic Bacterial Foraging Optimization
(DBFO) Algorithm

The DBFO algorithm is an advanced version of
the original BFO algorithm where dynamic
adjustments are incorporated in the most critical
parameters, such as step size, search radius, and
reproduction rate. In the original BFO algorithm,
bacteria search for nutrients by swimming and
tumbling in the search space with fixed
parameters regulating their motion. The basic
BFO is a stochastic search algorithm inspired
basically by the foraging process of the E. coli
bacteria [19]. It was designed to obtain the
optimum solution vector for challenging
objective functions that are neither differentiable
nor gradient-based. The algorithm possesses a
chemotaxis process, such as tumbling and
swimming. In the BFO algorithm, a tumble is one
unit movement in any direction to simulate the
movement of the bacterium after tumbling. A
constant run-length unit determines the
movement step in any direction. The position of
a specific bacterium at specific chemotactic and
reproduction steps and elimination/dispersal
events. The cost function at that position is
occasionally called the nutrient function [19].
The process repeats while cost reductions are
possible, terminating after an optimal number of
steps. The cost function associated with each
bacterium is adjusted according to some
swarming behavior, which results from cell-to-
cell signaling produced by the bacterial colonies
to create swarm patterns. The cell-to-cell
signaling effect function is added to the cost
function [20]. Reproduction is triggered after
completing the maximum allowed chemotactic
steps. The population is reduced by half, and the
less fit half perish, with each bacterium in the
fitter half dividing into two and occupying the

same position [19]. After the specified
reproduction  steps are completed, an
elimination/dispersal event occurs, involving a
series of excisions. At this phase, any bacterium
is able to migrate to explore new regions within
the boundaries of the feasible search space. Each
of the bacteria also has a probability, as
determined by a fraction [20], to undergo the
elimination/dispersal event. In the standard
Bacterial Foraging algorithm (BFO), the step
length is a constant. Though that might be
acceptable for small linear optimization
problems, it will not support satisfactory
convergence for greater, non-convex problems.
Better dynamic properties are needed to support
effective convergence in high-dimensional
search spaces. To provide the desired results
using this enhanced algorithm, some different
improved versions of the Bacterial Forging
algorithm were presented in the literature [21-
28]. The key processes in the BFO developed
are:

e Chemotaxis: Bacteria move through the
search space, adjusting their step size
dynamically based on the gradient of the
objective function.

e Swarming: Bacteria communicate with one
another in order to exchange information on
promising areas of the search space.

e Reproduction: The population is
periodically updated by removing poor-
performing bacteria and duplicating the
best-performing ones on a regular basis.

e Elimination-dispersal: To avoid local
optima, a portion of the population
is dispersed at random  over the search
space.

In this paper, the active run-length parameter is
progressively adjusted to gain the desired
dynamic and adaptive characteristics. This is
central in enhancing the local and global
exploration ability of the algorithm. With this in
mind, the unit of run-length adjustment ensures
an appropriate balance between exploitation and
exploration during search. A fixed step length is
substituted by an adaptive non-linear dynamical
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function to facilitate the swim behavior. The
function used is as presented in [11, 28]. The
DBFO algorithm is utilized here in order to fine-
tune the hyper-parameters of the ANF and
LSTM system models, including the number of
neurons, learning rate, and fuzzy membership
functions.

4. PROPOSED HYBRID MODEL

The suggested hybrid model combines LSTM
and ANF systems, and the DBFO algorithm
tunes the hyperparameters of the two models.
Figure 3 illustrates the overall architecture of the
hybrid system in the form of a flowchart. The
process begins with loading and preprocessing
the historical data, which includes removing
abnormal and incomplete entries. The core
LSTM-ANF model is then implemented, and its
hyperparameters are optimized using the DBFO
algorithm. This optimization loop continues
iteratively. After each iteration, the forecasting
accuracy is computed. The DBFO algorithm
continues to search for better hyperparameters
until a stopping criterion is met. These criteria,
shown in the flowchart, are: if the MSE (or
MAPE) falls below a predefined satisfactory
threshold, otherwise, if the maximum number of
iterations (Max Itr.) is reached. If either
condition is met ("Yes"), the process terminates
and outputs the final forecast; if not ("No"), the
optimization continues. In this framework, the
LSTM is primarily applied to forecast the short-
term load, leveraging its strength in capturing
temporal patterns, while the ANF system is used
to forecast the spinning reserve, effectively
handling its uncertainty and non-linearity. The
parameters of both models are optimized by the
DBFO algorithm to minimize a composite
objective function as measured by the mean-
squared-error (MSE) of the predictions of load
and reserve. The DBFO algorithm is employed to
optimize the hyperparameters of both the LSTM
and ANF models. The optimization objective is
to minimize a composite fitness function, F,
which is defined as the sum of the Mean Squared
Errors (MSE) for both the load and spinning
reserve forecasts:

F = MSEload + MSEreserVe

where a lower value of F indicates a better
overall model performance.

Start

-

Loading Load and
Spinning Reserve Data

v

Data Processing
Removing Abnormal and

Y

Implementing the LSTM-ANF

Optimization by
Applving the DBFO

Forecasting Accuracy
Computation

No MSE?
MAPE?

Yes

Fnd

Fig 3. Flowchart of the proposed hybrid LSTM-
ANF-DBFO forecasting system.

5. SIMULATION RESULTS

The dataset utilized in the present study
comprises one month of hourly spinning reserve
and hourly load data of a regional power system.
Extra attributes like temperature, humidity, and
day-of-week are provided so that the forecast’s
precision is accomplished. The performance of
the suggested model is compared using the
following measures:

e Mean Squared Error (MSE): Represents
the average of squared differences between
estimates and observations.
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e Mean Absolute Percentage Error
(MAPE): Is the percentage error between
predicted and actual values.

e R-Squared (R?): Quantifies the goodness-
of-fit between predictions and observed
values.

In order to check the validity of the model, it is
competed with the following baseline models:
ARIMA, SVM, LSTM without optimization,
ANF system without optimization, and the
LSTM-BFO algorithm hybrid model. The first
step is to remove abnormal and incomplete data
from the database. It is performed via
thresholding, regression, and averaging. Next,
load and spinning reserve forecasting is
conducted through the ARIMA methodology. In
parallel, however, forecasting is performed
through SVM  regression.  Subsequently,
forecasting of load and spinning reserve is
conducted using the LSTM network exclusively.
Finally, load and spinning reserve forecasting is
carried out with a hybrid mechanism of a basic
BFO algorithm and LSTM through an innovative
weighted average method. The proposed
enhanced DBFO algorithm with LSTM and ANF
system is then used to achieve the required
prediction. In order to validate the methodology
of this technique, values such as MSE, RMSE,
MEAN, and STD are computed for each method
in the context of predicted and measured values.

The proposed model and other models were
carried out for day-ahead-load-forecasting. The
algorithm was written and run in MATLAB and
executed on an Intel Core i7- 10750H 4.1 GHz
computer with 32 GB RAM. For consistency, 45
independent runs were done. A particular data set
for a complete month-long period, September 15
through October 14, 2015, was gathered for a
chosen zone [29]. Data is allocated as: 70%
training, 15% validation, and 15% testing. The
last day's data was forecasted using the provided
model and comparison models based upon the
training set and testing set. The forecasted load
data was then compared with actual data for the
same day. Spinning reserve data at the hourly
level was actually allocated based upon chosen
data in order to simulate a realistic electricity

market for the same time span of the load dataset
containing a huge number of data points. From
this total, 80% was utilized for network training,
10% was used for validation, and the remaining
10% was utilized for system testing. Results are
presented in Table 1. The DBFO optimized
hybrid LSTM-ANF system model outperforms
all the baseline models in MSE, MAPE, and R2.
Dynamic DBFO algorithm- adjustment allows
for more effective exploration of the
hyperparameter space that results in better
predictive performance. Figures 4, 5 and 6
present the performance of the engineered
algorithm in comparison with the other models
examined.

5.1. Computational Efficiency and
Convergence Analysis

Beyond predictive accuracy, the computational
performance of the optimization algorithm is a
critical practical consideration. The convergence
behavior of the proposed DBFO was compared
against the standard BFO. Figure 7 illustrates the
convergence curves, plotting the fitness
value F against the number of iterations. The
DBFO algorithm demonstrates notably faster
convergence, reaching a near-optimal solution in
approximately 30-40 iterations, whereas the
standard BFO requires more than 60 iterations to
achieve a comparable level. Furthermore, the
DBFO converges to a superior final fitness value,
corroborating the results in Table 1. This
improved convergence comes with a quantifiable
computational cost. On the specified hardware, a
single run of the LSTM-BFO model required
approximately 22 minutes, while a run of the
more complex proposed LSTM-ANF-DBFO
model required 35 minutes on average. This
represents a trade-off, where a ~60% increase in
computational time is justified by a significant
13-15% improvement in forecasting accuracy
and a substantial enhancement in model
robustness and reliability, as shown in Table 1.
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Table 1. Performance comparison of different models
for short-term load and spinning reserve prediction.

Spinning
Model Metric Load‘ Reserve
Forecasting A
Forecasting
0.0125 0.0151
MSE
S (£0.0015) (£0.0018)
MAPE
.58 (£0. 72 (£0.72
ARIMA %) 8.58 (£0.95) 5.72 (£0.72)
Max 28.5 19.1
Error
R? 0.939 0.925
0.0115 0.0138
MSE
S (+0.0012) (20.0015)
MAPE
12 (£0. 521 (£0.
SVM %) 6.12 (£0.75) | 0.521 (£0.08)
Max 228 2.15
Error
R? 0.948 0.931
0.0074 0.0091
MSE
S (20.0009) (£0.0011)
MAPE
4.45 (=0. 328 (£0.
LSTM %) 5(£0.55) | 0.328 (£0.05)
Max 15.3 1.45
Error
R? 0.978 0.965
0.0069 0.0085
MSE (+0.0007) (£0.0009)
MAPE
2.26 (£0.30 0.312 (£0.04
ANF %) ( ) ( )
Max
Error 9.1 1.32
R? 0.981 0.971
0.0052 0.0073
MSE (£0.0005) (x0.0007)
LSTM- MAPE 1.94 (£0.25) | 0.248 (+0.03)
(%)
BFO M
ax 6.8 1.05
Error
R? 0.988 0.979
0.0045 0.0062
MSE (+0.0003) (£0.0004)
Proposed MAPE
LSTM- 1.68 (£0.15) | 0.215 (+0.02)
(%)
ANF- M
DBFO ax 52 0.88
Error
R? 0.992 0.985

MAPE % Error

==@== 0ad forecast % error

12
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==@==Spinning reserve % error

N\
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Fig 4. MSE % error for load and spinning reserve
forecast.
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Fig 5. MAPE % error for load and spinning reserve
forecast.

Convergence of BFO vs. DBFO Algorithms
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——@— BFO Fitness +=@= DBFO Fitness

0.05
1]
3004
4
=~ 0.03
A
£ 0.02
E 001

0
0 20 40 60 80

Iteration Number

Fig 6. R? for load and spinning reserve forecast.
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Fig 7. Convergence curve (fitness value vs. iteration
number) for BFO vs. DBFO algorithms.

6. CONCLUSION

In this paper, an innovative hybrid model for
short-term load and spinning reserve forecasting
is proposed by integrating LSTM, the ANF
system, and the DBFO algorithm. The results
demonstrate that the proposed LSTM-ANF-
DBFO model is far superior to traditional and
modern benchmark methods. Quantitatively, for
short-term load forecasting, the proposed model
achieved an MSE of 0.0045, a MAPE of 1.68%,
and an R? of 0.992. This represents a significant
improvement over the next best model (LSTM-
BFO), with a 13.5% reduction in MSE and
a 13.4% reduction in MAPE. For spinning
reserve forecasting, the model achieved an MSE
0f0.0062, a MAPE 0f0.215%, and an R?
0f 0.985, corresponding to a 15.1% reduction in
MSE and a 13.3% reduction in MAPE compared
to the LSTM-BFO model. Furthermore, the
proposed model exhibited the greatest
robustness, evidenced by the lowest standard
deviation of errors across 45 independent runs
(e.g., £0.0003 for load MSE), and the highest
reliability, with the smallest maximum recorded
errors (5.2 for load and 0.88 for reserve). These
comprehensive metrics confirm the model's
superior accuracy, robustness, and reliability for
both forecasting tasks. Despite the promising
results, this study has certain limitations. The
model's performance is dependent on the quality
and completeness of the input data; significant
data corruption or missing long-term trends
could impact forecasting accuracy. The
computational complexity of the DBFO

algorithm, while effective, is higher than that of
simpler optimization techniques, which may be a
consideration for real-time applications on very
large datasets. Furthermore, the current model
does not explicitly incorporate the impact of high
penetration of renewable energy sources or real-
time electricity pricing, which are becoming
increasingly important in modern power
systems.
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