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ABSTRACT 

Accurate forecasting of short-term load and spinning reserve is essential for ensuring the secure operation 

of power systems, facilitating effective electricity generation and demand-side management. This paper 

introduces an innovative hybrid forecasting approach, integrating Long Short-Term Memory (LSTM) 

networks and Adaptive Neuro-Fuzzy system (ANF) models, optimized by a Dynamic Bacterial Foraging 

algorithm (DBFO). The LSTM model is best suited for detecting time-series patterns, but the ANF system 

contains fuzzy logic and ANN to be able to handle uncertainty and nonlinearity of data. The DBFO 

algorithm adjusts the hyperparameters of the two models by dynamically adjusting essential parameters 

according to changes in the environment. Extensive testing on actual power system data confirms that the 

proposed hybrid models perform better than conventional approaches, providing robust and reliable 

predictions for load and spinning reserve. Comparative studies with traditional machine learning tools and 

existing optimization algorithms also reinforce the superiority of the proposed methodology. 

Keywords: Adaptive Neuro-Fuzzy system (ANF), Dynamic Bacterial Foraging algorithm (DBFO), Long Short-Term 

Memory (LSTM), Power systems, Short-term load prediction, Spinning reserve.

 الطويلة البحث البكتيري الديناميكي الهجين مع الذاكرة قصيرة المدىخوارزمية 
الدوران والنظام العصبي الضبابي التكيفي للتنبؤ بالحمل قصير المدى واحتياطي 

1إبراهيم علي فرحات ،2عبد المجيد عمر البكوش  ،1محمد محمد الشريف

. ليبيا، زليتن، الأسمرية الإسلامية  ، الجامعةكلية الهندسة، قسم الهندسة الكهربائية والإلكترونية 1
 .ليبيا، الخمس  ،جامعة المرقب، كلية الهندسة، لحاسوبقسم الهندسة الكهربائية وا 2

ملخــــــــــــــــص البحــــــــــــــــــث 
يُعدّ التنبؤ الدقيق بالحمل قصييير المدو واحتيا ي الدوناأ رمر ا رسيياسييي ا للييماأ التشيينيل اامن لأن،مة الياقة، مما يُسييهّل  وليد  

ا مبتكر ا للتنبؤ الهجين، يدمج شبكات الذاكرة  ويلة   ( LSTM)المدو  الكهرباء بكفاءة وإدانة اليلب.  قُدّم هذه الونقة البحثية نهج 
نة بواسيييييييية  وانزمية البحي البكتير  الديناميكي )ANFونماذج الن،ام العصيييييييبي الليييييييبابي التكيفي ) (. يُعدّ DBFO(، المُحسيييييييّ

على منيق ضييييييبابي وشييييييبكة عصييييييبية   ANFالأنسييييييب  كتشيييييياس رنمام السييييييلاسييييييل ال منية، بينما يحتو  ن،ام    LSTMنموذج  
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المعياملات الفيائقية للنموذجين من   DBFO( للتعياميل مع عيدم اليقين وعيدم  ييية البييانيات. ُ عيدّي  وانزميية ANNاصييييييييييييييينيا يية )
 لاي  عديل المعاملات الأسيييييييييييياسييييييييييييية ديناميكي ا وفق ا لتنيرات البيفة.  ؤكد ا  تبانات المكثفة على بيانات ن،ام الياقة الفعلي رأ  
النمياذج الهجينية المقترحية  قُيدّم رداء  رفلييييييييييييييل من اليرُ التقلييديية، مميا يُوفّر  نبؤات قويية ومودوقية للحميل واحتييا ي اليدوناأ. كما  

.ت المقاننة مع ردوات التعلم االي التقليدية و وانزميات التحسين الحالية  فوُ المنهجية المقترحةُ عّ ز الدناسا

، أنظمة الطاقة،    الطويلة  النظام العصبي الضبابي التكيفي ، خوارزمية البحث الديناميكي عن البكتيريا، الذاكرة قصيرة المدى  ة:لادالكلمات ال

 .التنبؤ بالحمل قصير المدى، الاحتياطي الدوار 

1. INTRODUCTION :

Load forecasting involves estimating future 

power consumption across a specified 

timeframe. Based on the time horizon, load 

forecasting can be categorized as short-term, 

medium-term, or long-term. For short-term load 

forecasting, the prediction timeframe typically 

ranges from one hour to several weeks [1]. STLF 

and spinning reserve prediction are highly 

important in the operation of power systems on a 

daily basis. These predictions have an impact on 

energy dispatch, reserve scheduling, and total 

supply and demand balance [2]. The inherent 

uncertainty in load and spinning reserve 

forecasting lies in the very dynamic and non-

linear nature of power systems, which are 

affected by multiple factors, such as weather, 

seasonality, economic load, and customers' 

behavior [3]. Load forecasting accuracy is 

evidently influenced by the load uncertainty. 

This is only logical because load forecasting 

relies on historical records. Certain factors like 

weather, political activities, and social activities 

influence the correctness of the foregoing 

forecasts [4]. Numerous methodologies have 

been developed to tackle the load forecasting 

issue. These could be broadly classified into two 

categories [5]. The first category encompasses 

statistical and mathematical techniques, 

including time series analysis, regression 

modeling, and autoregressive integrated moving 

average (ARIMA) methods [6]. The second 

category includes heuristic, non-calculus-based 

techniques, i.e., fuzzy logic [7], artificial NN [8], 

and support vector machines [9-11]. Despite 

their ease of use and simplicity, the statistical 

methods are not very capable of handling the 

nonlinearities in load data patterns, which makes 

their performance deteriorate when used for 

complex, non-linear systems. Artificial 

intelligence-based methods, however, have been 

found to be more successful in handling such 

non-linear data sets. Machine learning 

techniques, particularly Artificial Neural 

Networks (ANNs) and support vector machines 

(SVM), have attained enhanced accuracy 

through their ability to capture and model 

intricate non-linear relationships. Among these 

advanced techniques, Long Short-Term Memory 

(LSTM) networks have emerged as a preferred 

choice for time series forecasting due to their 

capability to capture long-term dependencies 

within sequential data. Another advanced 

machine learning method is the Adaptive Neuro-

Fuzzy system (ANF), which incorporates fuzzy 

logic and ANNs to express uncertainty and 

handle non-linearity. While LSTM and ANF 

have been effective, selecting optimal 

hyperparameters for these models remains an 

enormous challenge. Optimization algorithms, 

particularly nature-inspired approaches, have 

been drawing increased interest for 

hyperparameter optimization. One such 

optimization technique is the Bacterial Foraging 

Algorithm (BFO), which mimics the foraging 

patterns observed in bacterial colonies. To 

realize improved optimization performance, a 

Dynamic Bacterial Foraging Optimization 

Algorithm (DBFO) is put forward in this 

research, in which the search parameters are 

dynamically regulated to enhance convergence 

and robustness. The main goal of the paper is to 

introduce a developed hybrid model with LSTM 

and ANF system using the DBFO for the 
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optimization of hyperparameters of the LSTM 

and ANF system for better short-term load and 

spinning reserve prediction. Subsequently, the 

proposed methodology is benchmarked against 

conventional machine learning approaches, 

including ARIMA, Support Vector Regression 

(SVR), and static BFO algorithm-based models. 

The subsequent sections of this paper are 

organized as follows: Section II provides an 

overview of short-term load and spinning reserve 

forecasting, while Section III details the hybrid 

models employed for forecasting. Section IV 

introduces the proposed model. Simulation 

results and conclusions are presented in Section 

V and Section VI, respectively.  

2. SHORT-TERM LOAD AND SPINNING

RESERVE FORECASTING

Precise short-term load and spinning reserve 

forecasting is crucial for maintaining system 

stability and minimizing operational costs [2]. 

Traditional short-term load forecasting methods, 

including ARIMA and exponential smoothing 

time-series models, are incapable of modeling 

the complex, non-linear couplings in today's 

power systems. Machine learning models, 

including ANN, LSTM, and SVM, have 

demonstrated improved forecasting performance 

by modeling non-linearities and learning from 

historical data over the last few years. Prediction 

of spinning reserve, needed to provide stability to 

the grid in the event of an unplanned generator 

failure or increase in demand, has typically been 

addressed using the same statistical and machine 

learning techniques. Though load forecasting has 

been extensively researched, spinning reserve 

prediction is a less popular subject [2]. 

3. APPLIED HYBRID MODELS FOR

FORECASTING

Hybrid approaches combining the advantages of 

two or more machine learning techniques have 

become popular in power system prediction. 

Among such hybrid approaches is the integration 

of LSTM and ANF, which combines the 

temporal learning potential of LSTM with the 

fuzzy reasoning logic of ANF system. ANF 

models are used where the system dynamics are 

partially known so that they can handle 

uncertainty and model complex relationships 

effectively. Multi-layer LSTM networks are 

proposed in the literature by authors in [12], and 

they are highly effective at predicting variable 

load data. A new deep ANN that combines 

hidden features of Convolutional Neural 

Networks (CNN) and LSTM models to enhance 

prediction accuracy is introduced in [13]. The 

study in [14] employs two distinct models—ANF 

with Fuzzy-C-Means (FCM) clustering and 

LSTM networks—for day-ahead renewable 

electricity generation forecasting, with both 

approaches yielding comparable results. Ref [15] 

describes a hybrid method that combines a 

Convolutional ANN with Multi-Layer Bi-

Directional LSTM (M-BLSTM) networks for 

energy consumption forecasting, structured 

across three hierarchical levels. The first is about 

efficient preprocessing for data confirmation, 

screening, and adjustment. The second is a 

hybrid architecture combining CNN with an M-

BLSTM network that processes sequential input 

data. 

3.1. Optimization Algorithms for 

Hyperparameter Tuning 

The performance of machine learning models is 

highly dependent on their hyperparameters and, 

therefore, needs optimization to improve 

prediction. BFO is an optimization algorithm that 

draws inspiration from the foraging behaviour of 

bacteria such as Escherichia coli. Fixed 

parameters are used by traditional BFO 

algorithms in the search process, which can limit 

their adaptability to dynamic problems. Recent 

contributions have proposed variants of BFOA 

that vary their parameters dynamically during the 

search process to achieve improved convergence 

rate and solution quality. The DBFO adopted in 

this work is grounded on these advances, 

dynamic variation of key parameters according 

to the fitness landscape. 

3.2. Long Short-Term Memory (LSTM) 

Networks 

The LSTM network was originally proposed by 

Hochreiter and Schmidhuber in 1997. It 
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represents a specialized variant of Recurrent 

Neural Networks (RNNs), specifically 

engineered to capture long-term dependencies 

within sequential data. 

LSTMs address the vanishing gradient problem 

prevalent in conventional RNNs through the 

integration of memory cells that retain 

information over extended temporal 

sequences. The key advantage of this 

architecture over a basic RNN is its gated 

structure, as illustrated in Figure 1. Each LSTM 

cell is composed of three distinct gates; input, 

forget, and output, that collectively govern the 

information flow within the network. Unlike 

normal RNNs, which either repeat content at 

each time step or simply sum up input signals and 

pass them through activation functions, LSTM 

networks naturally learn and remember 

important information at a fundamental level. 

This enables them to maintain long-term 

dependencies by forwarding important 

information without diminution. LSTMs also 

possess a memory cell called the Cell-State (Ct) 

that serves as long-term memory and is updated 

at each time step. The Cell-State does two 

significant operations: (1) removing irrelevant 

information (the forget gate governs this) and (2) 

appending new relevant information (the update 

gate takes care of this). The output gate also 

regulates the quantity of memory content carried 

forward in the ultimate output. The connection 

between input (Ct-1) and output (Ct) is carried 

out through the entire sequence, preserving 

ongoing information passage. Figure 1 illustrates 

this mechanism [12, 16–18]. 

Fig 1. Schematic comparison of a basic RNN cell 

(left) and an LSTM cell (right), highlighting the 

internal gates (input, forget, output) and the cell state 

(Ct) pathway that enable long-term dependency 

learning. 

For short-term load forecasting and reserve 

forecasting, LSTM networks are well adapted to 

detect temporal associations among historical 

load data, weather, and the other parameters. The 

standard LSTM is trained with backpropagation 

through time (BPTT) minimizing MSE between 

predicted and actual outputs. 

3.3. Adaptive Neuro-Fuzzy (ANF) System 

The ANF system is a hybrid approach, which 

integrates fuzzy logic and ANNs, bringing 

together the interpretability of fuzzy inference 

systems and the learning capability of ANNs. 

The ANF system is particularly suited for 

systems with inherent uncertainty, where fuzzy 

rules can model the imprecise and vague 

relationships between variables. ANF system 

method, introduced by Jang in 1993, was 

designed as an adaptive and trainable 

network. The ANF system typically consists of a 

five-layer architecture, as shown in Figure 2, 

which combines fuzzy logic membership 

functions with the learning capability of a neural 

network. Neural-fuzzy modelling defines the 

system behaviour through fuzzy logic rules 

within the framework of this adaptive network. 

The initial layer, i.e., the fuzzy layer, employs 

membership functions in order to calculate the 

membership degree of each of the variables for 

establishing a fuzzy system. The second layer, 

i.e., the inference layer, is where the weight of

every function is acquired. The third layer, which

is the normalization layer, is where weights are

normalized. Once normalized, the weights are

computed in the fourth layer, where the ultimate

results are summed in the fifth layer. The nodes

in these layers can have fixed or trainable

parameters [14].

Fig 2. General structure of a five-layer Adaptive 

Neuro-Fuzzy Inference System (ANFIS). 
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In this study, the ANF system is utilized to model 

the non-linear interaction among input 

parameters such as load, temperature, humidity, 

and reserve demand. The fuzzy system of ANF 

is constructed upon a Sugeno-type fuzzy model, 

and rules are tuned with gradient descent and 

backpropagation training.  

3.4. Dynamic Bacterial Foraging Optimization 

(DBFO) Algorithm  

The DBFO algorithm is an advanced version of 

the original BFO algorithm where dynamic 

adjustments are incorporated in the most critical 

parameters, such as step size, search radius, and 

reproduction rate. In the original BFO algorithm, 

bacteria search for nutrients by swimming and 

tumbling in the search space with fixed 

parameters regulating their motion. The basic 

BFO is a stochastic search algorithm inspired 

basically by the foraging process of the E. coli 

bacteria [19]. It was designed to obtain the 

optimum solution vector for challenging 

objective functions that are neither differentiable 

nor gradient-based. The algorithm possesses a 

chemotaxis process, such as tumbling and 

swimming. In the BFO algorithm, a tumble is one 

unit movement in any direction to simulate the 

movement of the bacterium after tumbling. A 

constant run-length unit determines the 

movement step in any direction. The position of 

a specific bacterium at specific chemotactic and 

reproduction steps and elimination/dispersal 

events. The cost function at that position is 

occasionally called the nutrient function [19]. 

The process repeats while cost reductions are 

possible, terminating after an optimal number of 

steps. The cost function associated with each 

bacterium is adjusted according to some 

swarming behavior, which results from cell-to-

cell signaling produced by the bacterial colonies 

to create swarm patterns. The cell-to-cell 

signaling effect function is added to the cost 

function [20]. Reproduction is triggered after 

completing the maximum allowed chemotactic 

steps. The population is reduced by half, and the 

less fit half perish, with each bacterium in the 

fitter half dividing into two and occupying the 

same position [19]. After the specified 

reproduction steps are completed, an 

elimination/dispersal event occurs, involving a 

series of excisions. At this phase, any bacterium 

is able to migrate to explore new regions within 

the boundaries of the feasible search space. Each 

of the bacteria also has a probability, as 

determined by a fraction [20], to undergo the 

elimination/dispersal event. In the standard 

Bacterial Foraging algorithm (BFO), the step 

length is a constant. Though that might be 

acceptable for small linear optimization 

problems, it will not support satisfactory 

convergence for greater, non-convex problems. 

Better dynamic properties are needed to support 

effective convergence in high-dimensional 

search spaces. To provide the desired results 

using this enhanced algorithm, some different 

improved versions of the Bacterial Forging 

algorithm were presented in the literature [21-

28]. The key processes in the BFO developed 

are: 

• Chemotaxis: Bacteria move through the 

search space, adjusting their step size 

dynamically based on the gradient of the 

objective function. 

• Swarming: Bacteria communicate with one 

another in order to exchange information on 

promising areas of the search space. 

• Reproduction: The population is 

periodically updated by removing poor-

performing bacteria and duplicating the 

best-performing ones on a regular basis. 

• Elimination-dispersal: To avoid local 

optima, a portion of the population 

is dispersed at random over the search 

space. 
 

In this paper, the active run-length parameter is 

progressively adjusted to gain the desired 

dynamic and adaptive characteristics. This is 

central in enhancing the local and global 

exploration ability of the algorithm. With this in 

mind, the unit of run-length adjustment ensures 

an appropriate balance between exploitation and 

exploration during search. A fixed step length is 

substituted by an adaptive non-linear dynamical 
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function to facilitate the swim behavior. The 

function used is as presented in [11, 28]. The 

DBFO algorithm is utilized here in order to fine-

tune the hyper-parameters of the ANF and 

LSTM system models, including the number of 

neurons, learning rate, and fuzzy membership 

functions. 

4. PROPOSED HYBRID MODEL 

The suggested hybrid model combines LSTM 

and ANF systems, and the DBFO algorithm 

tunes the hyperparameters of the two models. 

Figure 3 illustrates the overall architecture of the 

hybrid system in the form of a flowchart. The 

process begins with loading and preprocessing 

the historical data, which includes removing 

abnormal and incomplete entries. The core 

LSTM-ANF model is then implemented, and its 

hyperparameters are optimized using the DBFO 

algorithm. This optimization loop continues 

iteratively. After each iteration, the forecasting 

accuracy is computed. The DBFO algorithm 

continues to search for better hyperparameters 

until a stopping criterion is met. These criteria, 

shown in the flowchart, are: if the MSE (or 

MAPE) falls below a predefined satisfactory 

threshold, otherwise, if the maximum number of 

iterations (Max Itr.) is reached. If either 

condition is met ("Yes"), the process terminates 

and outputs the final forecast; if not ("No"), the 

optimization continues. In this framework, the 

LSTM is primarily applied to forecast the short-

term load, leveraging its strength in capturing 

temporal patterns, while the ANF system is used 

to forecast the spinning reserve, effectively 

handling its uncertainty and non-linearity. The 

parameters of both models are optimized by the 

DBFO algorithm to minimize a composite 

objective function as measured by the mean-

squared-error (MSE) of the predictions of load 

and reserve. The DBFO algorithm is employed to 

optimize the hyperparameters of both the LSTM 

and ANF models. The optimization objective is 

to minimize a composite fitness function, 𝐹, 

which is defined as the sum of the Mean Squared 

Errors (MSE) for both the load and spinning 

reserve forecasts: 

𝐹 = MSEload +MSEreserve 

where a lower value of 𝐹 indicates a better 

overall model performance. 

 

Fig 3. Flowchart of the proposed hybrid LSTM-

ANF-DBFO forecasting system. 

5. SIMULATION RESULTS 

The dataset utilized in the present study 

comprises one month of hourly spinning reserve 

and hourly load data of a regional power system. 

Extra attributes like temperature, humidity, and 

day-of-week are provided so that the forecast’s 

precision is accomplished. The performance of 

the suggested model is compared using the 

following measures: 

• Mean Squared Error (MSE): Represents 

the average of squared differences between 

estimates and observations. 

Yes 

Start 

Loading Load and 

Spinning Reserve Data 

Data Processing 

Removing Abnormal and 

Incomplete Data 

Implementing the LSTM-ANF 

Algorithm 

Optimization by 

Applying the DBFO 

Forecasting Accuracy 

Computation 

MSE? 

MAPE? 

or Max Itr. 

End 

No 
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• Mean Absolute Percentage Error 

(MAPE): Is the percentage error between 

predicted and actual values. 

• R-Squared (R²): Quantifies the goodness-

of-fit between predictions and observed 

values. 

In order to check the validity of the model, it is 

competed with the following baseline models: 

ARIMA, SVM, LSTM without optimization, 

ANF system without optimization, and the 

LSTM-BFO algorithm hybrid model. The first 

step is to remove abnormal and incomplete data 

from the database. It is performed via 

thresholding, regression, and averaging. Next, 

load and spinning reserve forecasting is 

conducted through the ARIMA methodology. In 

parallel, however, forecasting is performed 

through SVM regression. Subsequently, 

forecasting of load and spinning reserve is 

conducted using the LSTM network exclusively. 

Finally, load and spinning reserve forecasting is 

carried out with a hybrid mechanism of a basic 

BFO algorithm and LSTM through an innovative 

weighted average method. The proposed 

enhanced DBFO  algorithm with LSTM and ANF 

system is then used to achieve the required 

prediction. In order to validate the methodology 

of this technique, values such as MSE, RMSE, 

MEAN, and STD are computed for each method 

in the context of predicted and measured values. 
 

The proposed model and other models were 

carried out for day-ahead-load-forecasting. The 

algorithm was written and run in MATLAB and 

executed on an Intel Core i7- 10750H 4.1 GHz 

computer with 32 GB RAM. For consistency, 45 

independent runs were done. A particular data set 

for a complete month-long period, September 15 

through October 14, 2015, was gathered for a 

chosen zone [29]. Data is allocated as: 70% 

training, 15% validation, and 15% testing. The 

last day's data was forecasted using the provided 

model and comparison models based upon the 

training set and testing set. The forecasted load 

data was then compared with actual data for the 

same day. Spinning reserve data at the hourly 

level was actually allocated based upon chosen 

data in order to simulate a realistic electricity 

market for the same time span of the load dataset 

containing a huge number of data points. From 

this total, 80% was utilized for network training, 

10% was used for validation, and the remaining 

10% was utilized for system testing. Results are 

presented in Table 1. The DBFO optimized 

hybrid LSTM-ANF system model outperforms 

all the baseline models in MSE, MAPE, and R². 

Dynamic DBFO algorithm- adjustment allows 

for more effective exploration of the 

hyperparameter space that results in better 

predictive performance. Figures  4, 5 and 6 

present the performance of the engineered 

algorithm in comparison with the other models 

examined. 

5.1. Computational Efficiency and 

Convergence Analysis 

Beyond predictive accuracy, the computational 

performance of the optimization algorithm is a 

critical practical consideration. The convergence 

behavior of the proposed DBFO was compared 

against the standard BFO. Figure 7 illustrates the 

convergence curves, plotting the fitness 

value 𝐹 against the number of iterations. The 

DBFO algorithm demonstrates notably faster 

convergence, reaching a near-optimal solution in 

approximately 30-40 iterations, whereas the 

standard BFO requires more than 60 iterations to 

achieve a comparable level. Furthermore, the 

DBFO converges to a superior final fitness value, 

corroborating the results in Table 1. This 

improved convergence comes with a quantifiable 

computational cost. On the specified hardware, a 

single run of the LSTM-BFO model required 

approximately 22 minutes, while a run of the 

more complex proposed LSTM-ANF-DBFO 

model required 35 minutes on average. This 

represents a trade-off, where a ~60% increase in 

computational time is justified by a significant 

13-15% improvement in forecasting accuracy 

and a substantial enhancement in model 

robustness and reliability, as shown in Table 1. 
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Table 1. Performance comparison of different models 

for short-term load and spinning reserve prediction. 
 

Model Metric 
Load 

Forecasting 

Spinning 

Reserve 

Forecasting 

ARIMA 

MSE 
0.0125 

(±0.0015) 

0.0151 

(±0.0018) 

MAPE 

(%) 
8.58 (±0.95) 5.72 (±0.72) 

Max 

Error 
28.5 19.1 

R² 0.939 0.925 

SVM 

MSE 
0.0115 

(±0.0012) 

0.0138 

(±0.0015) 

MAPE 

(%) 
6.12 (±0.75) 0.521 (±0.08) 

Max 

Error 
22.8 2.15 

R² 0.948 0.931 

LSTM 

MSE 
0.0074 

(±0.0009) 

0.0091 

(±0.0011) 

MAPE 

(%) 
4.45 (±0.55) 0.328 (±0.05) 

Max 

Error 
15.3 1.45 

R² 0.978 0.965 

ANF 

MSE 
0.0069 

(±0.0007) 

0.0085 

(±0.0009) 

MAPE 

(%) 
2.26 (±0.30) 0.312 (±0.04) 

Max 

Error 
9.1 1.32 

R² 0.981 0.971 

LSTM-

BFO 

MSE 
0.0052 

(±0.0005) 

0.0073 

(±0.0007) 

MAPE 

(%) 
1.94 (±0.25) 0.248 (±0.03) 

Max 

Error 
6.8 1.05 

R² 0.988 0.979 

Proposed 

LSTM-

ANF-

DBFO 

MSE 
0.0045 

(±0.0003) 

0.0062 

(±0.0004) 

MAPE 

(%) 
1.68 (±0.15) 0.215 (±0.02) 

Max 

Error 
5.2 0.88 

R² 0.992 0.985 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4. MSE % error for load and spinning reserve 

forecast. 

 
Fig 5.  MAPE % error for load and spinning reserve 

forecast. 

 

Fig 6. R2 for load and spinning reserve forecast. 
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Fig 7. Convergence curve (fitness value vs. iteration 

number) for BFO vs. DBFO algorithms. 

6. CONCLUSION 

In this paper, an innovative hybrid model for 

short-term load and spinning reserve forecasting 

is proposed by integrating LSTM, the ANF 

system, and the DBFO algorithm. The results 

demonstrate that the proposed LSTM-ANF-

DBFO model is far superior to traditional and 

modern benchmark methods. Quantitatively, for 

short-term load forecasting, the proposed model 

achieved an MSE of 0.0045, a MAPE of 1.68%, 

and an R² of 0.992. This represents a significant 

improvement over the next best model (LSTM-

BFO), with a 13.5% reduction in MSE and 

a 13.4% reduction in MAPE. For spinning 

reserve forecasting, the model achieved an MSE 

of 0.0062, a MAPE of 0.215%, and an R² 

of 0.985, corresponding to a 15.1% reduction in 

MSE and a 13.3% reduction in MAPE compared 

to the LSTM-BFO model. Furthermore, the 

proposed model exhibited the greatest 

robustness, evidenced by the lowest standard 

deviation of errors across 45 independent runs 

(e.g., ±0.0003 for load MSE), and the highest 

reliability, with the smallest maximum recorded 

errors (5.2 for load and 0.88 for reserve). These 

comprehensive metrics confirm the model's 

superior accuracy, robustness, and reliability for 

both forecasting tasks. Despite the promising 

results, this study has certain limitations. The 

model's performance is dependent on the quality 

and completeness of the input data; significant 

data corruption or missing long-term trends 

could impact forecasting accuracy. The 

computational complexity of the DBFO 

algorithm, while effective, is higher than that of 

simpler optimization techniques, which may be a 

consideration for real-time applications on very 

large datasets. Furthermore, the current model 

does not explicitly incorporate the impact of high 

penetration of renewable energy sources or real-

time electricity pricing, which are becoming 

increasingly important in modern power 

systems. 
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