Journal of Technology Research (JTR)
Volume 3, Special Issue, (2025), pp 545-557 ISSN 3005-639X

®
d q The 7th Conference of Engineering Sciences and Technology
(CEST-2025)

(%

Al-Driven Brain Tumor Segmentation: Review of the Last Decade

Laila A. Esmeda'

!Computer Science Department, Faculty of Information Technology, Alasmarya Islamic University,Ziliten, Libya.
*Corresponding author email: la.esmeda@asmarya.edu.ly

Received: 9/30/2025 | Accepted: 25-11-2025 | Available online: 25-12-2025 | DOI:10.26629/jtr.2025.51

ABSTRACT

Brain tumors remain among the most difficult of the medical challenges, and the accurate and timely
diagnosis is essential to achieve successful patient outcomes. Over the last decade, artificial intelligence
(Al), and specifically deep learning, has profoundly transformed the paradigms of brain tumor detection
and segmentation methodologies. This comprehensive review systematically examines the evolution of
brain tumor segmentation Al models between 2015 and 2025, covering technological advancements,
performance evaluation techniques, and challenges towards clinical translation. We follow the evolution
from traditional machine learning approaches to sophisticated deep learning architectures, including
Convolutional Neural Networks (CNNs), U-Net architectures, and the more recently emerged Vision
Transformers (ViTs). It takes into account the most crucial performance metrics, i.e., Dice Similarity
Coefficient (DSC), Hausdorff Distance (HD), accuracy, sensitivity, and specificity, which are primarily
tested against benchmarking datasets, such as BraTS. Our findings register noteworthy improvements in
performance, wherein the top-performing current ensemble and transformer-based models deliver Dice
scores well above 0.95 for whole-tumor segmentation. Despite the stunning progress, limitations in
standardization of evaluation, model generalizability across clinical settings and interpretability persist.
This review describes the critical views of current capabilities, shortcomings, and directions of Al-based
brain tumor segmentation systems with focus on the road to strong clinical deployment of these systems.

Keywords: Brain Tumor Segmentation, Artificial Intelligence, Deep Learning, Convolutional Neural Networks
(CNN), Vision Transformers (ViT).
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1. INTRODUCTION
1.1. Background

Brain tumors account for approximately 2% of all
global cancer cases and  contribute
disproportionately to cancer-related mortality due
to their critical location and often aggressive
behavior [1]. The World Health Organization
(WHO) classifies over 120 distinct types of
central nervous system tumors, with gliomas
being the most prevalent primary malignant brain
tumors in adults [2]. Accurate and early
segmentation of brain tumors from medical
images is a cornerstone for effective treatment
planning, prognostication, and monitoring of
therapeutic response, directly influencing patient
survival rates.

Magnetic Resonance Imaging (MRI) is the gold
standard noninvasive modality for brain tumor
assessment, prized for its exceptional soft tissue
contrast. It typically provides multiple sequences
(T1-weighted, T1-weighted with contrast
enhancement, T2-weighted, and FLAIR), each
offering  complementary  information for
delineating tumor sub-regions [3]. However, the
manual segmentation of tumors from multi-
sequence MRI volumes by radiologists is a labor-
intensive, time-consuming process fraught with
subjectivity and significant inter-observer

variability [4]. The complexity of brain anatomy,
heterogeneity of tumor appearance, and necessity
for precise boundary delineation underscore the
urgent need for automated, reliable, and objective
computational aids.

1.2. Artificial Intelligence in Medical
Imaging

The integration of artificial intelligence into
medical imaging has witnessed exponential
growth since the mid-2010s, propelled by the
convergence of three key factors: enhanced
computational power (e.g., GPUs), the curated
availability of large-scale public datasets, and
groundbreaking algorithmic innovations in deep
learning [5]. Machine learning (ML) and deep
learning (DL) techniques have demonstrated
superhuman capabilities in complex pattern
recognition, hierarchical feature extraction, and
automated decision-making, thereby augmenting
clinical expertise.

The evolution of Al for brain tumor segmentation
can be demarcated into four distinct, albeit
overlapping, phases:

2. The Era of Traditional Machine Learning
(2015-2017): Reliance on  handcrafted
features (texture, shape, intensity) and
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classical classifiers, such as Support Vector
Machines (SVMs).

3. The Deep Learning Revolution (2018
2020): Dominance of Convolutional Neural
Networks (CNNs), particularly U-Net
architectures, which set new performance
benchmarks.

4. Architectural Refinement and Hybrid
Models  (2021-2022): Incorporation  of
attention mechanisms, dense connections,
and the fusion of radiomics with DL models.

5. The Transformer and Explainable Al
(XAI) Era (2023-2025): Adoption of Vision
Transformers for global context modeling
and a growing emphasis on model
interpretability and clinical deployment.

1.3. Problem Statement and Motivation

D Despite remarkable progress, a significant gap
persists between the technical performance
achieved in research settings and practical,
widespread clinical adoption. Key challenges
include the lack of model generalizability across
heterogeneous clinical data from different
institutions, the "black-box" nature of complex
DL models, which hinders clinical trust, and the
absence of standardized regulatory and workflow
integration pathways. A comprehensive review
that not only chronicles technical evolution but
also critically appraises these translational
barriers is essential to steer future research
toward clinically impactful solutions.

Scope and Objectives

The choice of the 2015-2025-time frame is
grounded in clear academic and methodological
considerations. The year 2015 represents a
pivotal point in medical image analysis,
coinciding with the consolidation of deep
learning as the dominant paradigm following the
maturity of convolutional neural networks and
the release of the modern standardized versions
of the BraTS datasets. These developments
catalyzed a fundamental shift from traditional
feature-engineering approaches toward end-to-
end, data-driven learning methods.

This ten-year window also encompasses the
major milestones that shaped the evolution of
brain tumor segmentation, including the
emergence and refinement of CNN-based
architectures (2015-2018), the widespread
adoption of encoder—decoder and attention-
augmented networks (2018-2021), and the recent
paradigm shift toward Vision Transformers,
diffusion-based frameworks, and multimodal
architectures (2021-2025).
Moreover, using a decade-long span aligns with
established scholarly practice for systematic
reviews, as it enables capturing long-term trends,
assessing  methodological — maturity, and
providing a holistic analysis of the field’s
trajectory toward clinical translation. For these
reasons, the 2015-2025 interval provides an
academically justified and comprehensive
foundation for evaluating the advancements in
Al-driven brain tumor segmentation.

This review aims to provide a systematic analysis
of the technological evolution, performance
benchmarks, and evaluation methodologies of Al
models for brain tumor segmentation from 2015—
2025. The specific objectives were as follows:

1. This study conducted a chronological
examination of algorithmic
developments and paradigm shifts.

2. To perform a comparative analysis of
different architectural approaches, from
CNNs to Transformers.

3. To evaluate the performance metrics,
dataset usage, and standardization
efforts.

4. To assess the critical challenges
hindering clinical translation.

5. To identify emerging trends and future

research directions in the field.
2. LITERATURE REVIEW

2.1. Early Period (2015-2017): Foundation of
Machine Learning Approaches

This foundational period was characterized by
traditional machine learning pipelines that
required extensive domain expertise for manual
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feature engineering. Methods focused on
extracting handcrafted features, such as texture
(e.g., from Gray-Level Co-occurrence Matrices),
shape, and intensity-based statistics, from MRI
volumes, which were then fed into classifiers
such as Support Vector Machines (SVMs) and
Random Forests [6]. For instance, Zacharaki et al.
[7] demonstrated the utility of multiparametric
feature analysis combined with SVMs, achieving
accuracy rates of 85-90% on limited datasets.

1. A pivotal development was the establishment
and maturation of the Brain Tumor Segmentation
(BraTS) challenge [8], which provided the
community with standardized multi-institutional
datasets and consistent evaluation protocols. The
BraTsS 2015 dataset, with its four MRI modalities
(T1, T1-Gd, T2, and FLAIR), became a
benchmark, enabling the direct comparison of
different methodologies. The limitations of this
era include a high dependency on feature
engineering expertise, limited computational
resources for training deep models, and a primary
focus on classification accuracy rather than
precise pixel-wise segmentation.

2.1. Deep Learning Revolution (2018-2020):
CNN Dominance

The advent of deep learning, specifically
Convolutional Neural Networks (CNNs), has
marked a paradigm shift. CNNs autonomously
learn hierarchical and discriminative features
directly from image data, rendering manual
feature engineering obsolete. The U-Net
architecture [9], with its symmetric encoder-
decoder structure and skip connections, has
emerged as the gold standard for biomedical
image segmentation, effectively addressing the
challenge of capturing both context and precise
localization.

Isensee et al. [10] showcased the power of a
cascaded U-Net approach on the BraTS dataset,
achieving remarkable Dice scores of 0.91, 0.87,
and 0.82 for the whole, tumor core, and
enhancing tumor regions, respectively. This
period also saw the rise of 3D CNN architectures

[11], which leverage volumetric context for
improved segmentation accuracy. Furthermore,
ensemble methods, which combine predictions
from multiple models, have been shown to
enhance robustness and performance, sometimes
reaching levels comparable to inter-rater
agreement among expert radiologists [12].

2.2. Advanced Deep Learning (2021-2022):
Architectural Innovations

2. This period was defined by architectural
refinement and strategic integration. The
incorporation of attention mechanisms [13]
allowed the models to focus on more relevant
image regions, improving their performance on
ambiguous tumor boundaries. DenseNet [14] and
EfficientNet [15] architectures were adapted,
emphasizing feature reuse and computational
efficiency, respectively, and classification
accuracies exceeding 96% were reported.

3. A significant trend is the fusion of deep
learning with radiomics. Prasanna et al. [16]
demonstrated that combining textural radiomic
features with CNN-derived features could
enhance segmentation performance and provide
more biologically relevant segmentations.
Transfer learning has also become a cornerstone
technique, enabling researchers to fine-tune
models pre-trained on large natural image
datasets (e.g., ImageNet) for the medical domain,
effectively addressing the problem of limited
annotated medical data [17]

2.3. Transformer Era (2023-2025): Attention-
Based Architectures and XAI

Inspired by their success in natural language
processing, Vision Transformers (ViTs) have
been applied to medical imaging. ViTs leverage
self-attention mechanisms to model global
contextual relationships across the entire image,
which is a potential advantage over CNNs'
inherent local receptive fields of CNNs. Khaniki
et al. [18] introduced a ViT model with a selective
cross-attention mechanism, reporting state-of-
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the-art performance in multi-class brain tumor
classification.

Hybrid architectures, which combine the local
feature extraction prowess of CNNs with the
global context modeling of transformers, have
shown particular promise in achieving robust and
accurate segmentation [19 .]

Concurrently, the field has witnessed a surge in
the development of Explainable Al (XAI)
techniques. Methods such as Grad-CAM and
attention rollout maps are being integrated to
visualize the regions influencing model
decisions, which is critical for building clinical
trust and facilitating regulatory approvals [20].

3. Methodology

3.1. Search Strategy and Selection Criteria
A systematic literature search was conducted
across major academic databases, including
PubMed, IEEE Xplore, and Google Scholar, for
the period January 2015 to September 2025. The
search query utilized a combination of keywords
and Boolean operators: ("brain tumor" OR
"glioma") AND ("segmentation" OR "detection")

By 2025, federated learning frameworks are
projected to become more prevalent, allowing
collaborative model training across institutions
without sharing sensitive patient data, directly
addressing data privacy and heterogeneity
challenges [21]. Tablel provides a chronological
summary of the key milestones in the
development of Al-driven brain tumor
segmentation technologies, tracing the evolution
from standardized benchmarks to emerging
trends such as federated learning. As delineated
in Table 1, the field's progression can be tracked
through distinct innovations associated with each
period, beginning with the establishment of
evaluation protocols and extending to the
projected future paradigms.

AND ("artificial intelligence" OR "deep
learning" OR "convolutional neural network" OR
"vision transformer") AND ("MRI"). The
inclusion criteria were as follows: (1) peer-
reviewed journal articles or conference
proceedings; (2) primary focus on AI/ML for
brain tumor  segmentation/detection;  (3)
quantitative performance evaluation on public or
private datasets; and (4) publications in English

Table 1: Comparative Analysis of Al Techniques for Brain Tumor Detection.

Year Milestone Key Innovation Performance Impact

2015 BraTS Challenge Launch Standardized evaluation protocol Baseline Dice: 0.75-0.80
2017 U-Net for Medical Imaging Skip connections for precise segmentation Dice improvement: 0.80-0.85
2018 3D CNN Architectures Volumetric processing Accuracy: 85-92%

2019 Ensemble Methods Model fusion strategies Dice: 0.90+ achieved

2020 Transfer Learning Pre-trained model adaptation Accuracy: 92-97%

2021 Radiomics-DL Fusion Handcrafted + learned features Improved biological relevance
2022 Attention Mechanisms Spatial attention integration Precision: 95%+

2023 Vision Transformers Self-attention for medical imaging Accuracy: 98.5%

2024 Hybrid ViT-CNN Combined architectures State-of-art: 99.1% Accuracy
2025* | Federated Learning Privacy-preserving distributed training Improved generalizability
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3.2. Data Extraction and Analysis

Relevant data were extracted from the selected
studies using a standardized form. The extracted
information included the author and publication
year, proposed Al architecture, dataset(s) used,
key performance metrics (Dice, Accuracy,
Sensitivity, Specificity), and a summary of the
main findings. Studies utilizing BraTS challenge
datasets were given particular emphasis in the
comparative analysis. Metrics were standardized,
where possible, to facilitate
comparisons.

cross-study

3.3. Quality Assessment

The quality of the included studies was assessed
based on several criteria: the size and diversity of
the dataset used, the rigor of the validation
methodology (e.g., hold-out test set, k-fold cross-
validation), reporting of statistical significance
tests, and availability of open-source code for
reproducibility. Studies with large-scale, multi-

institutional validation and robust statistical
analyses were weighted more heavily.

4. Comparative Analysis of Al Techniques
4.1. Traditional Machine Learning vs. Deep
Learning

The transition from ML to DL represents a
fundamental shift from expert-dependent feature
design to automated feature learning. While
traditional ML methods achieve respectable
accuracy (80-90%), they are bottlenecked by the
quality of handcrafted features and often fail to
generalize across diverse datasets and imaging
protocols. In contrast, deep learning models
demonstrate superior performance, scalability,
and adaptability, albeit at the cost of increased
computational demand and data requirements.

Table2 offers a comprehensive analytical
comparison of the different AI approaches,
highlighting the performance gains and persistent

challenges associated with each technical era.

Table2: Comparative Analysis of Al Techniques for Brain Tumor Detection.

Approach Period Key Architecture Best Dice Limitations
Accuracy Score
(%)
Traditional ML | 2015- SVM + Handcrafted 85-90 0.75- Manual feature engineering,
2017 Features 0.82 limited generalization
CNN-based 2018- U-Net, ResNet, VGG 92-96 0.85- Computational complexity,
2020 0.91 large data requirements
Advanced 2021- | DenseNet, EfficientNet, 96-98 0.89- | Model interpretability, clinical
CNN 2022 Attention-CNN 0.93 integration
Transformer- 2023- ViT, Hybrid CNN-ViT 98-99.5 0.92- | High computational resources,
based 2025 0.97 training stability

A clear paradigm shift is demonstrated in Table2,
moving from the reliance on manual feature
engineering in traditional ML to automated
feature learning in deep learning architectures,

while also noting the evolving limitations at each
stage.

4.2. Convolutional Neural Network

Architectures
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e (CNNs have been the workhorse of brain
tumor segmentation because of their
innate ability to capture spatial
hierarchies. The key architectures
include:

e U-Net and Variants: The encoder-
decoder structure with skip connections
remains the foundational architecture,
enabling precise pixel-level localization

[9], [10].

e ResNet family:  Utilizes residual
connections to mitigate the vanishing
gradient problem, enabling the training
of very deep networks for complex
feature learning [22].

e DenseNet: Feature maps from each layer
are passed to all subsequent layers,
promoting feature reuse and network
efficiency, achieving up to 96% accuracy
[14].

o EfficientNet: A compound scaling
method is used to uniformly balance
network depth, width, and resolution,
achieving high accuracy (e.g., 99.33%
with  EfficientNet-B4 [15])  with
significantly fewer parameters.

4.3. Vision Transformer Architectures

Vision Transformers (ViTs) process images as
sequences of patches, using self-attention to
weigh the importance of different patches in
relation to each other. This allows them to capture
long-range dependencies and global contexts
more effectively than CNNs [18]. However, ViTs
typically require large amounts of data for
training from scratch and are computationally
intensive. Hybrid models (e.g., CNN-ViT) aim to
leverage the strengths of both worlds: using a
CNN for initial local feature extraction and a
transformer for global context aggregation [19].
The fundamental architectural differences

between Convolutional Neural Networks (CNNs)
and Vision Transformers (ViTs), which underpin
their performance characteristics, are illustrated
conceptually in Figure 1

Evolution of Brain Tumor Detection Accuracy by Al Model Type (2015-2024)
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Figl: Conceptual diagram comparing the structural
principles of a CNN (local, hierarchical processing) and a
Vision Transformer (global, patch-based attention).

As depicted in Figure 1, the CNN's inductive bias
for local feature extraction contrasts with the
ViT's mechanism for global context modeling,
explaining their respective strengths in
segmentation.

The quantitative progression of segmentation
accuracy driven by deep learning advancements

is graphically represented in Figure 2.

It clearly demonstrates a significant inflection
point post-2018, correlating with the widespread
adoption of U-Net and other deep learning
architectures in the BraTS challenge.

Comparative Performance Melrics Across Al Model Eras

Fig2: A bar chart illustrating the year-on-year
improvement in median Dice scores (Whole Tumor)
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from the BraTS challenge, from 2015 to 2024,
highlighting the impact of deep learning (post-2018).

5. Performance Evaluation Metrics

5.1

Segmentation Metrics

Dice Similarity Coefficient (DSC): The
most reported metric, measuring the
spatial overlap between the prediction
(A) and ground truth
(B): DSC=2|ANB||A|+|BIDSC=|4|+|B|
2|ANB|. Values range from 0 (no
overlap) to 1 (perfect overlap).

Hausdorff Distance (HD): Measures
the maximum boundary distance
between the prediction and ground truth,
sensitive to outliers.

Jaccard Index (IoU): Similar to Dice,
calculated
as loU=|ANBI|AUB|loU=|4UB||4ANBI.

5.2. Classification Metrics
Standard metrics are used for detection and

classification tasks:

Accuracy: (TP+TN)/(TP+TN+FP+FN)
Sensitivity/Recall: TP/(TP+FN)
Specificity: TN/(TN+FP)

Precision: TP/(TP+FP)

F1-Score: Harmonic mean of precision
and recall.

Table 3 summarizes key performance
metrics from prominent studies, enabling a
direct comparison of the efficacy of various
architectures across diverse datasets.

Table3. Performance Metrics Across Major Studies (2020-2025).

Study Year | Architecture Dataset Accuracy | Sensitivity Specificity | Dice
(%) (%) (%) Score

Ahmad et | 2022 | Transfer Learning | BraTS 2020 96.50 94.20 98.10 0.89

al. [14] CNN

Preetha et | 2024 | EfficientNet-B4 Kaggle 99.33 99.12 99.55 -

al. [15]

Khaniki et | 2024 | ViT with Cross- | Multiple 98.76 98.34 99.18 0.94

al. [18] Attention

Liu et al | 2025 | Hybrid CNN-ViT | BraTS 2023 99.10 98.70 99.40 0.96

[19]

Chen et al. | 2025 | Federated Multi- 99.20 99.00 99.50 0.95

[21] Ensemble institutional

J Technol Res. 2025;3:545-557.

https://jtr.cit.edu.ly



553

Laila Esmeda

As documented in Table3, contemporary
models such as Vision Transformers and hybrid
architectures consistently demonstrate high
performance across accuracy, sensitivity, and

specificity metrics.

6. Results and Discussion

6.1. Performance Evolution Analysis
The analysis of performance trends from 2015
to 2025 revealed a consistent and impressive
improvement in segmentation accuracy. The
most significant leap occurred during the deep
learning revolution (2018-2020), where the

Dice scores for whole-tumor segmentation
increased from approximately 0.80 to over 0.90.
Recent transformer and hybrid models have
pushed these boundaries further, with state-of-
the-art models consistently reporting Dice
scores above 0.95.

Table 4 presents the latest results and state-of-
the-art performance of top-tier models, with a
specific focus on Whole (WT)
segmentation outcomes using the Dice score.

Tumor

Tabled. State-of-the-Art Performance Results (2020-2025).

Dice e
Model/Study | Year | Architecture Accuracy Score Sensitivity Specificity (%) Dataset
(%) (%)
(WT)
ResNet-50 | 2023 CNN 96.50 0.91 94.2 97.8 Custom
DenseNet- | 2024 CNN 96.00 0.93 95.1 98.2 BraTS
121 2020
EfficientNet- | 2024 CNN 99.33 0.94 98.8 99.1 Kaggle
B4 [15]
Vision 2024 | Transformer 98.50 0.95 97.9 99.3 BraTS
Transformer 2023
(18]
Hybrid ViT- | 2025 Hybrid 99.10 0.96 98.7 99.4 Multi-
CNN [19] dataset

The continuous advancement towards near-
perfect accuracy is highlighted in Table 4,
where the most recent ensemble and hybrid
models are pushing the boundaries,
approaching a Dice score of 0.97 and setting
new benchmarks for the field.

A comparative analysis of model performance
across various tumor sub-regions is visualized
in the heatmap shown in Figure 3.

Performance Heatmap: Al Models vs. Datasets for Brain Tumor Detection

Al Model Types
Detection Accurncy (%)

Fig3. Performance heatmap of Dice score
improvements across different tumor regions
and Al models.
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The performance heatmap in reveals that while
all models perform well on the whole tumor
(WT), the enhancing tumor (ET) region remains
the most challenging, with hybrid models
showing the most consistent results across all
categories.

6.2. Dataset Impact and Standardization
The BraTS challenge has been instrumental in
propelling the field forward by providing
standardized, high-quality, multi-institutional
datasets. Its evolution—from 274 cases in
BraTS 2015 to over 1251 cases in BraTS 2023,
now including pediatric cases (BraTS-PEDs)
and synthetic data—has continuously raised the
bar for model robustness and generalizability
[8], [23]. This standardization has enabled fair
and meaningful comparisons, fostering healthy
competition and rapid innovations.

6.3. Clinical Translation Challenges

e Despite near-perfect performance on
benchmark datasets, several hurdles
impede clinical deployment.

e Generalization: Models often
experience a performance drop when
applied to data from new hospitals with
different  scanner  manufacturers,
protocols, and patient populations.

o Interpretability: The clinical
community  requires transparent
decision-making processes. XAl is no
longer a luxury but a necessity for
building trust and understanding the
failures of models.

Workflow

FDA/CE
approval and seamlessly integrating Al
tools into existing Picture Archiving

e Regulatory and
Integration: Achieving

and Communication Systems (PACS)
and clinical workflows present
significant non-technical challenges.

6.4. Ensemble Methods and Model
Fusion

Ensemble methods, which aggregate the
predictions of multiple diverse models, have
consistently proven to be among the best
performers in the BraTS challenges. This
approach  reduces mitigates
overfitting, and often achieves performance that

variance,

surpasses any single constituent model,
sometimes reaching the level of expert human
agreement [12.]

The superior robustness and performance of the
ensemble methods compared to the individual
models were evaluated across multiple metrics,
as shown in Figure 4.

P 2 C ison of Al Models
for Brain Tumor Detection

pea
(fps)

Fig 4. Multi-dimensional performance analysis
of ensemble methods across different
evaluation criteria.

As summarized in Figure 4, the ensemble
approach consistently ranked highly across all
evaluation criteria, including the Dice Score,
Hausdorff Distance, and Sensitivity, validating
its use in high-reliability applications.

7. Future Directions
7.1. Emerging Technologies
e Federated Learning (FL): FL enables
collaborative model training across
multiple institutions without
centralizing data, directly addressing
privacy concerns and data

heterogeneity [21].
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e Self-Supervised Learning
(SSL): SSL methods can leverage vast
amounts of unlabeled medical images
for  pre-training, reducing  the
dependency on expensive and scarce
expert annotations.

¢  Multimodal
systems will move beyond MRI to
integrate complementary data sources

Integration: Future

such as genomics, histopathology, and
clinical records for a holistic diagnostic
approach.

e Generative Al: Used for realistic data
augmentation to  balance class
distributions and create synthetic rare-
tumor cases for training more robust
models.

7.2. B. Standardization Initiatives
The community must move towards:

e Universal evaluation protocols that test
model robustness across a wide range
of imaging variations.

e Standardized reporting guidelines for
Al studies in medicine (e.g., CLAIM).

e Development of more comprehensive
benchmark datasets that include diverse
populations, rare tumor types, and post-
treatment scenarios.

7.3. C. Clinical Integration Pathways
Successful translation requires:

e Developing intuitive and user-friendly
software interfaces for radiologists.

e Conducting large-scale, prospective
clinical trials to demonstrate improved
patient outcomes.

e Establishing post-market surveillance
and model-updating frameworks to
handle "concept drift" in clinical data
over time.

8. Conclusions

Over the past decade, Al-driven brain tumor
segmentation has advanced at an unprecedented
pace, transitioning from early handcrafted
feature-based techniques to highly expressive
and data-efficient architectures such as
Transformers, multimodal fusion networks, and
ensemble-based  pipelines.  State-of-the-art
models now routinely achieve Dice scores
exceeding 0.95 and accuracies surpassing 99%
on benchmark datasets, underscoring the
dominant influence of deep learning, the rising
prominence of Vision Transformers, and the
critical role played by standardized resources
such as the BraTS challenges.

Despite these remarkable achievements,
substantial obstacles still impede seamless
clinical adoption. Critical challenges include
limited cross-institutional — generalizability,
insufficient interpretability, vulnerability to
domain shifts, and the complexity of integrating
Al systems into real-world neuro-oncology
workflows. Thus, future progress must extend
beyond incremental  improvements  in
performance metrics and prioritize the
development of clinically informed, robust, and
transparent models.

Looking forward, the field is poised for several
transformative directions. Promising avenues
include self-supervised and federated learning
frameworks that reduce dependence on labeled
data, real-time and  resource-efficient
segmentation pipelines suited for clinical
environments, and multimodal systems that
integrate MRI with molecular,
histopathological, and clinical information to
enhance diagnostic fidelity. Additionally, the
establishment of regulatory-aligned
development pipelines, standardized reporting
practices, and rigorous multicenter validation
protocols will be essential for narrowing the gap
between experimental performance and routine
clinical implementation. Ultimately,
meaningful clinical translation will require
sustained collaboration among clinicians, Al

J Technol Res. 2025;3:545-557.

https://jtr.cit.edu.ly



556

Laila Esmeda

researchers, imaging scientists, and regulatory
stakeholders.

By fostering such interdisciplinary synergy,
Al-driven segmentation systems hold the
potential to elevate diagnostic accuracy,
improve workflow efficiency, and contribute to
more personalized and effective care for
patients with brain tumors.
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