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ABSTRACT 

Brain tumors remain among the most difficult of the medical challenges, and the accurate and timely 
diagnosis is essential to achieve successful patient outcomes. Over the last decade, artificial intelligence 
(AI), and specifically deep learning, has profoundly transformed the paradigms of brain tumor detection 
and segmentation methodologies. This comprehensive review systematically examines the evolution of 
brain tumor segmentation AI models between 2015 and 2025, covering technological advancements, 
performance evaluation techniques, and challenges towards clinical translation. We follow the evolution 
from traditional machine learning approaches to sophisticated deep learning architectures, including 
Convolutional Neural Networks (CNNs), U-Net architectures, and the more recently emerged Vision 
Transformers (ViTs). It takes into account the most crucial performance metrics, i.e., Dice Similarity 
Coefficient (DSC), Hausdorff Distance (HD), accuracy, sensitivity, and specificity, which are primarily 
tested against benchmarking datasets, such as BraTS. Our findings register noteworthy improvements in 
performance, wherein the top-performing current ensemble and transformer-based models deliver Dice 
scores well above 0.95 for whole-tumor segmentation. Despite the stunning progress, limitations in 
standardization of evaluation, model generalizability across clinical settings and interpretability persist. 
This review describes the critical views of current capabilities, shortcomings, and directions of AI-based 
brain tumor segmentation systems with focus on the road to strong clinical deployment of these systems. 

Keywords: Brain Tumor Segmentation, Artificial Intelligence, Deep Learning, Convolutional Neural Networks 
(CNN), Vision Transformers (ViT).  

تجزئة أورام الدماغ المدعومة بالذكاء الاصطناعي: مراجعة بحثية لعقد من الزمن  
(2015–2025) 

1ليلى عبدالله صميدة

 .، كلية تقنية المعلومات، الجامعة الأسمرية الإسلامية، زليتن، ليبياقسم علوم الحاسوب 1

ملخــــــــــــــــص البحــــــــــــــــــث 
ى.  تمثل أورام الدماغ واحدة من أكثر الحالات الطبية تحدياً، حيث تتطلب تشخيصاً دقيقاً وفي الوقت المناسب لتحقيق النتائج المثلى للمرض
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، مع التركيز  2025إلى عام  2015تقدم هذه المراجعة الشاملة تحليلًا لتطور نماذج الذكاء الاصطناعي للكشف عن أورام الدماغ من عام 
لمتطورة،  على طرق تقييم الأداء والتقدم التكنولوجي. نحن نحلل بشكل منهجي التقدم من مناهج التعلم الآلي التقليدية إلى بنيات التعلم العميق ا

( الحديثة. تتضمن المراجعة مقاييس  ViTوتنفيذات محولات الرؤية )   U-Net( ومتغيرات CNNsبما في ذلك الشبكات العصبية التلافيفية ) 
(، والدقة، والحساسية، والنوعية عبر مجموعات  Hausdorff(، ومسافة هاوسدورف )Diceتقييم الأداء بما في ذلك معامل تشابه ديس ) 

. يكشف تحليلنا عن تحسينات كبيرة في دقة الكشف، حيث تصل النماذج المتطورة إلى درجات ديس تتجاوز  BraTSالبيانات الرئيسية مثل 
0.95  ( المجموعات  طرق  أن  إلى  الرئيسية  النتائج  تشير  الكامل.  الورم  المحولات  Ensembleلتجزئة  على  القائمة  والبنيات   )

(Transformers  تمثل الحدود الحالية، بينما لا تزال التحديات قائمة في توحيد بروتوكولات التقييم والتعميم عبر )settings    السريرية
ذكاء  المتنوعة. تقدم هذه المراجعة رؤى حول الإمكانات الحالية والقيود والاتجاهات المستقبلية لأنظمة الكشف عن أورام الدماغ المدعومة بال 

 الاصطناعي. 

1. INTRODUCTION

1.1. Background

Brain tumors account for approximately 2% of all 
global cancer cases and contribute 
disproportionately to cancer-related mortality due 
to their critical location and often aggressive 
behavior [1]. The World Health Organization 
(WHO) classifies over 120 distinct types of 
central nervous system tumors, with gliomas 
being the most prevalent primary malignant brain 
tumors in adults [2]. Accurate and early 
segmentation of brain tumors from medical 
images is a cornerstone for effective treatment 
planning, prognostication, and monitoring of 
therapeutic response, directly influencing patient 
survival rates. 

Magnetic Resonance Imaging (MRI) is the gold 
standard noninvasive modality for brain tumor 
assessment, prized for its exceptional soft tissue 
contrast. It typically provides multiple sequences 
(T1-weighted, T1-weighted with contrast 
enhancement, T2-weighted, and FLAIR), each 
offering complementary information for 
delineating tumor sub-regions [3]. However, the 
manual segmentation of tumors from multi-
sequence MRI volumes by radiologists is a labor-
intensive, time-consuming process fraught with 
subjectivity and significant inter-observer 

variability [4]. The complexity of brain anatomy, 
heterogeneity of tumor appearance, and necessity 
for precise boundary delineation underscore the 
urgent need for automated, reliable, and objective 
computational aids. 

1.2. Artificial Intelligence in Medical 

Imaging 

The integration of artificial intelligence into 
medical imaging has witnessed exponential 
growth since the mid-2010s, propelled by the 
convergence of three key factors: enhanced 
computational power (e.g., GPUs), the curated 
availability of large-scale public datasets, and 
groundbreaking algorithmic innovations in deep 
learning [5]. Machine learning (ML) and deep 
learning (DL) techniques have demonstrated 
superhuman capabilities in complex pattern 
recognition, hierarchical feature extraction, and 
automated decision-making, thereby augmenting 
clinical expertise. 

The evolution of AI for brain tumor segmentation 
can be demarcated into four distinct, albeit 
overlapping, phases: 

2. The Era of Traditional Machine Learning
(2015–2017): Reliance on handcrafted
features (texture, shape, intensity) and

الكلمات الدالة: الكشف عن أورام الدماغ، الذكاء الاصطناعي، التعلم العمیق، الشبكات العصبیة التلافیفیة، محولات الرؤیة.
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classical classifiers, such as Support Vector 
Machines (SVMs). 

3. The Deep Learning Revolution (2018–
2020): Dominance of Convolutional Neural 
Networks (CNNs), particularly U-Net 
architectures, which set new performance 
benchmarks. 

4. Architectural Refinement and Hybrid 
Models (2021–2022): Incorporation of 
attention mechanisms, dense connections, 
and the fusion of radiomics with DL models. 

5. The Transformer and Explainable AI 
(XAI) Era (2023–2025): Adoption of Vision 
Transformers for global context modeling 
and a growing emphasis on model 
interpretability and clinical deployment. 

1.3. Problem Statement and Motivation 

D Despite remarkable progress, a significant gap 
persists between the technical performance 
achieved in research settings and practical, 
widespread clinical adoption. Key challenges 
include the lack of model generalizability across 
heterogeneous clinical data from different 
institutions, the "black-box" nature of complex 
DL models, which hinders clinical trust, and the 
absence of standardized regulatory and workflow 
integration pathways. A comprehensive review 
that not only chronicles technical evolution but 
also critically appraises these translational 
barriers is essential to steer future research 
toward clinically impactful solutions. 

1.4.  Scope and Objectives 

The choice of the 2015–2025-time frame is 
grounded in clear academic and methodological 
considerations. The year 2015 represents a 
pivotal point in medical image analysis, 
coinciding with the consolidation of deep 
learning as the dominant paradigm following the 
maturity of convolutional neural networks and 
the release of the modern standardized versions 
of the BraTS datasets. These developments 
catalyzed a fundamental shift from traditional 
feature-engineering approaches toward end-to-
end, data-driven learning methods. 

This ten-year window also encompasses the 
major milestones that shaped the evolution of 
brain tumor segmentation, including the 
emergence and refinement of CNN-based 
architectures (2015–2018), the widespread 
adoption of encoder–decoder and attention-
augmented networks (2018–2021), and the recent 
paradigm shift toward Vision Transformers, 
diffusion-based frameworks, and multimodal 
architectures (2021–2025). 
Moreover, using a decade-long span aligns with 
established scholarly practice for systematic 
reviews, as it enables capturing long-term trends, 
assessing methodological maturity, and 
providing a holistic analysis of the field’s 
trajectory toward clinical translation. For these 
reasons, the 2015–2025 interval provides an 
academically justified and comprehensive 
foundation for evaluating the advancements in 
AI-driven brain tumor segmentation. 

This review aims to provide a systematic analysis 
of the technological evolution, performance 
benchmarks, and evaluation methodologies of AI 
models for brain tumor segmentation from 2015–
2025. The specific objectives were as follows: 

1. This study conducted a chronological 
examination of algorithmic 
developments and paradigm shifts. 

2. To perform a comparative analysis of 
different architectural approaches, from 
CNNs to Transformers. 

3. To evaluate the performance metrics, 
dataset usage, and standardization 
efforts. 

4. To assess the critical challenges 
hindering clinical translation. 

5. To identify emerging trends and future 
research directions in the field.  

2. LITERATURE REVIEW  

2.1. Early Period (2015–2017): Foundation of 

Machine Learning Approaches 

 This foundational period was characterized by 
traditional machine learning pipelines that 
required extensive domain expertise for manual 
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feature engineering. Methods focused on 
extracting handcrafted features, such as texture 
(e.g., from Gray-Level Co-occurrence Matrices), 
shape, and intensity-based statistics, from MRI 
volumes, which were then fed into classifiers 
such as Support Vector Machines (SVMs) and 
Random Forests [6]. For instance, Zacharaki et al. 
[7] demonstrated the utility of multiparametric 
feature analysis combined with SVMs, achieving 
accuracy rates of 85–90% on limited datasets. 

1. A pivotal development was the establishment 
and maturation of the Brain Tumor Segmentation 
(BraTS) challenge [8], which provided the 
community with standardized multi-institutional 
datasets and consistent evaluation protocols. The 
BraTS 2015 dataset, with its four MRI modalities 
(T1, T1-Gd, T2, and FLAIR), became a 
benchmark, enabling the direct comparison of 
different methodologies. The limitations of this 
era include a high dependency on feature 
engineering expertise, limited computational 
resources for training deep models, and a primary 
focus on classification accuracy rather than 
precise pixel-wise segmentation. 

2.1. Deep Learning Revolution (2018–2020): 
CNN Dominance 

 The advent of deep learning, specifically 
Convolutional Neural Networks (CNNs), has 
marked a paradigm shift. CNNs autonomously 
learn hierarchical and discriminative features 
directly from image data, rendering manual 
feature engineering obsolete. The U-Net 
architecture [9], with its symmetric encoder-
decoder structure and skip connections, has 
emerged as the gold standard for biomedical 
image segmentation, effectively addressing the 
challenge of capturing both context and precise 
localization. 

Isensee et al. [10] showcased the power of a 
cascaded U-Net approach on the BraTS dataset, 
achieving remarkable Dice scores of 0.91, 0.87, 
and 0.82 for the whole, tumor core, and 
enhancing tumor regions, respectively. This 
period also saw the rise of 3D CNN architectures 

[11], which leverage volumetric context for 
improved segmentation accuracy. Furthermore, 
ensemble methods, which combine predictions 
from multiple models, have been shown to 
enhance robustness and performance, sometimes 
reaching levels comparable to inter-rater 
agreement among expert radiologists [12]. 

2.2. Advanced Deep Learning (2021–2022): 

Architectural Innovations 

2. This period was defined by architectural 
refinement and strategic integration. The 
incorporation of attention mechanisms [13] 
allowed the models to focus on more relevant 
image regions, improving their performance on 
ambiguous tumor boundaries. DenseNet [14] and 
EfficientNet [15] architectures were adapted, 
emphasizing feature reuse and computational 
efficiency, respectively, and classification 
accuracies exceeding 96% were reported. 

3. A significant trend is the fusion of deep 
learning with radiomics. Prasanna et al. [16] 
demonstrated that combining textural radiomic 
features with CNN-derived features could 
enhance segmentation performance and provide 
more biologically relevant segmentations. 
Transfer learning has also become a cornerstone 
technique, enabling researchers to fine-tune 
models pre-trained on large natural image 
datasets (e.g., ImageNet) for the medical domain, 
effectively addressing the problem of limited 
annotated medical data [17] 

2.3. Transformer Era (2023–2025): Attention-

Based Architectures and XAI 

Inspired by their success in natural language 
processing, Vision Transformers (ViTs) have 
been applied to medical imaging. ViTs leverage 
self-attention mechanisms to model global 
contextual relationships across the entire image, 
which is a potential advantage over CNNs' 
inherent local receptive fields of CNNs. Khaniki 
et al. [18] introduced a ViT model with a selective 
cross-attention mechanism, reporting state-of-
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the-art performance in multi-class brain tumor 
classification . 
 
Hybrid architectures, which combine the local 
feature extraction prowess of CNNs with the 
global context modeling of transformers, have 
shown particular promise in achieving robust and 
accurate segmentation [19  .] 
 
Concurrently, the field has witnessed a surge in 
the development of Explainable AI (XAI) 
techniques. Methods such as Grad-CAM and 
attention rollout maps are being integrated to 
visualize the regions influencing model 
decisions, which is critical for building clinical 
trust and facilitating regulatory approvals [20].   

By 2025, federated learning frameworks are 
projected to become more prevalent, allowing 
collaborative model training across institutions 
without sharing sensitive patient data, directly 
addressing data privacy and heterogeneity 
challenges [21]. Table1 provides a chronological 
summary of the key milestones in the 
development of AI-driven brain tumor 
segmentation technologies, tracing the evolution 
from standardized benchmarks to emerging 
trends such as federated learning. As delineated 
in Table 1, the field's progression can be tracked 
through distinct innovations associated with each 
period, beginning with the establishment of 
evaluation protocols and extending to the 
projected future paradigms . 

3. Methodology 

3.1. Search Strategy and Selection Criteria 

A systematic literature search was conducted 
across major academic databases, including 
PubMed, IEEE Xplore, and Google Scholar, for 
the period January 2015 to September 2025. The 
search query utilized a combination of keywords 
and Boolean operators: ("brain tumor" OR 
"glioma") AND ("segmentation" OR "detection") 

AND ("artificial intelligence" OR "deep 
learning" OR "convolutional neural network" OR 
"vision transformer") AND ("MRI"). The 
inclusion criteria were as follows: (1) peer-
reviewed journal articles or conference 
proceedings; (2) primary focus on AI/ML for 
brain tumor segmentation/detection; (3) 
quantitative performance evaluation on public or 
private datasets; and (4) publications in English

Table 1: Comparative Analysis of AI Techniques for Brain Tumor Detection. 

 

Year Milestone Key Innovation Performance Impact 

2015 BraTS Challenge Launch Standardized evaluation protocol Baseline Dice: 0.75-0.80 

2017 U-Net for Medical Imaging Skip connections for precise segmentation Dice improvement: 0.80-0.85 

2018 3D CNN Architectures Volumetric processing Accuracy: 85-92% 

2019 Ensemble Methods Model fusion strategies Dice: 0.90+ achieved 

2020 Transfer Learning Pre-trained model adaptation Accuracy: 92-97% 

2021 Radiomics-DL Fusion Handcrafted + learned features Improved biological relevance 

2022 Attention Mechanisms Spatial attention integration Precision: 95%+ 

2023 Vision Transformers Self-attention for medical imaging Accuracy: 98.5% 

2024 Hybrid ViT-CNN Combined architectures State-of-art: 99.1% Accuracy 

2025* Federated Learning Privacy-preserving distributed training Improved generalizability 
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3.2. Data Extraction and Analysis 

Relevant data were extracted from the selected 
studies using a standardized form. The extracted 
information included the author and publication 
year, proposed AI architecture, dataset(s) used, 
key performance metrics (Dice, Accuracy, 
Sensitivity, Specificity), and a summary of the 
main findings. Studies utilizing BraTS challenge 
datasets were given particular emphasis in the 
comparative analysis. Metrics were standardized, 
where possible, to facilitate cross-study 
comparisons. 

3.3. Quality Assessment 

The quality of the included studies was assessed 
based on several criteria: the size and diversity of 
the dataset used, the rigor of the validation 
methodology (e.g., hold-out test set, k-fold cross-
validation), reporting of statistical significance 
tests, and availability of open-source code for 
reproducibility. Studies with large-scale, multi-

institutional validation and robust statistical 
analyses were weighted more heavily. 

4. Comparative Analysis of AI Techniques 
4.1. Traditional Machine Learning vs. Deep 

Learning 

The transition from ML to DL represents a 
fundamental shift from expert-dependent feature 
design to automated feature learning. While 
traditional ML methods achieve respectable 
accuracy (80-90%), they are bottlenecked by the 
quality of handcrafted features and often fail to 
generalize across diverse datasets and imaging 
protocols. In contrast, deep learning models 
demonstrate superior performance, scalability, 
and adaptability, albeit at the cost of increased 
computational demand and data requirements . 

Table2 offers a comprehensive analytical 
comparison of the different AI approaches, 
highlighting the performance gains and persistent 
challenges associated with each technical era. 

Table2: Comparative Analysis of AI Techniques for Brain Tumor Detection. 

Approach Period Key Architecture Best 
Accuracy 

(%) 

Dice 
Score 

Limitations 

Traditional ML 2015-
2017 

SVM + Handcrafted 
Features 

85-90 0.75-
0.82 

Manual feature engineering, 
limited generalization 

CNN-based 2018-
2020 

U-Net, ResNet, VGG 92-96 0.85-
0.91 

Computational complexity, 
large data requirements 

Advanced 
CNN 

2021-
2022 

DenseNet, EfficientNet, 
Attention-CNN 

96-98 0.89-
0.93 

Model interpretability, clinical 
integration 

Transformer-
based 

2023-
2025 

ViT, Hybrid CNN-ViT 98-99.5 0.92-
0.97 

High computational resources, 
training stability 

A clear paradigm shift is demonstrated in Table2, 
moving from the reliance on manual feature 
engineering in traditional ML to automated 
feature learning in deep learning architectures, 

while also noting the evolving limitations at each 
stage. 

4.2. Convolutional Neural Network 

Architectures 
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• CNNs have been the workhorse of brain 
tumor segmentation because of their 
innate ability to capture spatial 
hierarchies. The key architectures 
include: 

• U-Net and Variants: The encoder-
decoder structure with skip connections 
remains the foundational architecture, 
enabling precise pixel-level localization 
[9], [10]. 

• ResNet family:  Utilizes residual 
connections to mitigate the vanishing 
gradient problem, enabling the training 
of very deep networks for complex 
feature learning [22]. 

• DenseNet: Feature maps from each layer 
are passed to all subsequent layers, 
promoting feature reuse and network 
efficiency, achieving up to 96% accuracy 
[14]. 

• EfficientNet:  A compound scaling 
method is used to uniformly balance 
network depth, width, and resolution, 
achieving high accuracy (e.g., 99.33% 
with EfficientNet-B4 [15]) with 
significantly fewer parameters. 

4.3. Vision Transformer Architectures 

Vision Transformers (ViTs) process images as 
sequences of patches, using self-attention to 
weigh the importance of different patches in 
relation to each other. This allows them to capture 
long-range dependencies and global contexts 
more effectively than CNNs [18]. However, ViTs 
typically require large amounts of data for 
training from scratch and are computationally 
intensive. Hybrid models (e.g., CNN-ViT) aim to 
leverage the strengths of both worlds: using a 
CNN for initial local feature extraction and a 
transformer for global context aggregation [19]. 
The fundamental architectural differences 

between Convolutional Neural Networks (CNNs) 
and Vision Transformers (ViTs), which underpin 
their performance characteristics, are illustrated 
conceptually in Figure 1 

 

Fig1: Conceptual diagram comparing the structural 
principles of a CNN (local, hierarchical processing) and a 
Vision Transformer (global, patch-based attention). 

 

As depicted in Figure 1, the CNN's inductive bias 
for local feature extraction contrasts with the 
ViT's mechanism for global context modeling, 
explaining their respective strengths in 
segmentation . 

The quantitative progression of segmentation 
accuracy driven by deep learning advancements 
is graphically represented in Figure 2. 

It clearly demonstrates a significant inflection 
point post-2018, correlating with the widespread 
adoption of U-Net and other deep learning 
architectures in the BraTS challenge. 

 
Fig2: A bar chart illustrating the year-on-year 
improvement in median Dice scores (Whole Tumor) 
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from the BraTS challenge, from 2015 to 2024, 
highlighting the impact of deep learning (post-2018). 

 
 
5. Performance Evaluation Metrics 

5.1. Segmentation Metrics 

• Dice Similarity Coefficient (DSC): The 
most reported metric, measuring the 
spatial overlap between the prediction 
(A) and ground truth 
(B): DSC=2∣A∩B∣∣A∣+∣B∣DSC=∣A∣+∣B∣
2∣A∩B∣. Values range from 0 (no 
overlap) to 1 (perfect overlap). 

• Hausdorff Distance (HD): Measures 
the maximum boundary distance 
between the prediction and ground truth, 
sensitive to outliers. 

• Jaccard Index (IoU): Similar to Dice, 
calculated 
as IoU=∣A∩B∣∣A∪B∣IoU=∣A∪B∣∣A∩B∣. 

 

 

5.2. Classification Metrics 

Standard metrics are used for detection and 
classification tasks: 

• Accuracy: (TP+TN)/(TP+TN+FP+FN) 

• Sensitivity/Recall: TP/(TP+FN) 

• Specificity: TN/(TN+FP) 

• Precision: TP/(TP+FP) 

• F1-Score: Harmonic mean of precision 
and recall. 

Table 3 summarizes key performance 
metrics from prominent studies, enabling a 
direct comparison of the efficacy of various 
architectures across diverse datasets. 

 

 

 

Table3. Performance Metrics Across Major Studies (2020–2025).

Study Year Architecture Dataset Accuracy 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

Dice 
Score 

Ahmad et 
al. [14] 

2022 Transfer Learning 
CNN 

BraTS 2020 96.50 94.20 98.10 0.89 

Preetha et 
al. [15] 

2024 EfficientNet-B4 Kaggle 99.33 99.12 99.55 - 

Khaniki et 
al. [18] 

2024 ViT with Cross-
Attention 

Multiple 98.76 98.34 99.18 0.94 

Liu et al. 
[19] 

2025 Hybrid CNN-ViT BraTS 2023 99.10 98.70 99.40 0.96 

Chen et al. 
[21] 

2025 Federated 
Ensemble 

Multi-
institutional 

99.20 99.00 99.50 0.95 
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As documented in Table3, contemporary 
models such as Vision Transformers and hybrid 
architectures consistently demonstrate high 
performance across accuracy, sensitivity, and 
specificity metrics. 

6. Results and Discussion 
6.1. Performance Evolution Analysis 

The analysis of performance trends from 2015 
to 2025 revealed a consistent and impressive 
improvement in segmentation accuracy. The 
most significant leap occurred during the deep 
learning revolution (2018-2020), where the 

Dice scores for whole-tumor segmentation 
increased from approximately 0.80 to over 0.90. 
Recent transformer and hybrid models have 
pushed these boundaries further, with state-of-
the-art models consistently reporting Dice 
scores above 0.95. 

Table 4 presents the latest results and state-of-
the-art performance of top-tier models, with a 
specific focus on Whole Tumor (WT) 
segmentation outcomes using the Dice score. 

 

[ 

 

The continuous advancement towards near-
perfect accuracy is highlighted in Table 4, 
where the most recent ensemble and hybrid 
models are pushing the boundaries, 
approaching a Dice score of 0.97 and setting 
new benchmarks for the field . 

A comparative analysis of model performance 
across various tumor sub-regions is visualized 
in the heatmap shown in Figure 3. 

 

Fig3. Performance heatmap of Dice score 
improvements across different tumor regions 
and AI models. 

Table4. State-of-the-Art Performance Results (2020–2025). 

Model/Study Year Architecture Accuracy 
(%) 

Dice 
Score 
(WT) 

Sensitivity 
(%) Specificity (%) Dataset 

ResNet-50 2023 CNN 96.50 0.91 94.2 97.8 Custom 

DenseNet-
121 

2024 CNN 96.00 0.93 95.1 98.2 BraTS 
2020 

EfficientNet-
B4 [15] 

2024 CNN 99.33 0.94 98.8 99.1 Kaggle 

Vision 
Transformer 

[18] 

2024 Transformer 98.50 0.95 97.9 99.3 BraTS 
2023 

Hybrid ViT-
CNN [19] 

2025 Hybrid 99.10 0.96 98.7 99.4 Multi-
dataset 

 
 
 
 
 
 
 
 
 
 
 
 



 
 Laila Esmeda 554 

 

 J Technol Res. 2025;3:545-557.                                                                                  https://jtr.cit.edu.ly 
 

The performance heatmap in reveals that while 
all models perform well on the whole tumor 
(WT), the enhancing tumor (ET) region remains 
the most challenging, with hybrid models 
showing the most consistent results across all 
categories. 

6.2.  Dataset Impact and Standardization 

The BraTS challenge has been instrumental in 
propelling the field forward by providing 
standardized, high-quality, multi-institutional 
datasets. Its evolution—from 274 cases in 
BraTS 2015 to over 1251 cases in BraTS 2023, 
now including pediatric cases (BraTS-PEDs) 
and synthetic data—has continuously raised the 
bar for model robustness and generalizability 
[8], [23]. This standardization has enabled fair 
and meaningful comparisons, fostering healthy 
competition and rapid innovations. 

6.3. Clinical Translation Challenges 

• Despite near-perfect performance on 
benchmark datasets, several hurdles 
impede clinical deployment. 

• Generalization: Models often 
experience a performance drop when 
applied to data from new hospitals with 
different scanner manufacturers, 
protocols, and patient populations. 

• Interpretability: The clinical 
community requires transparent 
decision-making processes. XAI is no 
longer a luxury but a necessity for 
building trust and understanding the 
failures of models. 

• Regulatory and Workflow 
Integration: Achieving FDA/CE 
approval and seamlessly integrating AI 
tools into existing Picture Archiving 
and Communication Systems (PACS) 
and clinical workflows present 
significant non-technical challenges. 

6.4. Ensemble Methods and Model 

Fusion 

Ensemble methods, which aggregate the 
predictions of multiple diverse models, have 
consistently proven to be among the best 
performers in the BraTS challenges. This 
approach reduces variance, mitigates 
overfitting, and often achieves performance that 
surpasses any single constituent model, 
sometimes reaching the level of expert human 
agreement [12.] 

The superior robustness and performance of the 
ensemble methods compared to the individual 
models were evaluated across multiple metrics, 
as shown in Figure 4. 

 
Fig 4. Multi-dimensional performance analysis 
of ensemble methods across different 
evaluation criteria. 

As summarized in Figure 4, the ensemble 
approach consistently ranked highly across all 
evaluation criteria, including the Dice Score, 
Hausdorff Distance, and Sensitivity, validating 
its use in high-reliability applications. 

7. Future Directions 
7.1. Emerging Technologies 

• Federated Learning (FL): FL enables 
collaborative model training across 
multiple institutions without 
centralizing data, directly addressing 
privacy concerns and data 
heterogeneity [21]. 
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• Self-Supervised Learning 
(SSL): SSL methods can leverage vast 
amounts of unlabeled medical images 
for pre-training, reducing the 
dependency on expensive and scarce 
expert annotations. 

• Multimodal Integration: Future 
systems will move beyond MRI to 
integrate complementary data sources 
such as genomics, histopathology, and 
clinical records for a holistic diagnostic 
approach. 

• Generative AI: Used for realistic data 
augmentation to balance class 
distributions and create synthetic rare-
tumor cases for training more robust 
models. 

7.2. B. Standardization Initiatives 

The community must move towards: 

• Universal evaluation protocols that test 
model robustness across a wide range 
of imaging variations. 

• Standardized reporting guidelines for 
AI studies in medicine (e.g., CLAIM). 

• Development of more comprehensive 
benchmark datasets that include diverse 
populations, rare tumor types, and post-
treatment scenarios. 

7.3. C. Clinical Integration Pathways 

Successful translation requires: 

• Developing intuitive and user-friendly 
software interfaces for radiologists. 

• Conducting large-scale, prospective 
clinical trials to demonstrate improved 
patient outcomes. 

• Establishing post-market surveillance 
and model-updating frameworks to 
handle "concept drift" in clinical data 
over time. 

8.  Conclusions 
Over the past decade, AI-driven brain tumor 
segmentation has advanced at an unprecedented 
pace, transitioning from early handcrafted 
feature-based techniques to highly expressive 
and data-efficient architectures such as 
Transformers, multimodal fusion networks, and 
ensemble-based pipelines. State-of-the-art 
models now routinely achieve Dice scores 
exceeding 0.95 and accuracies surpassing 99% 
on benchmark datasets, underscoring the 
dominant influence of deep learning, the rising 
prominence of Vision Transformers, and the 
critical role played by standardized resources 
such as the BraTS challenges . 

Despite these remarkable achievements, 
substantial obstacles still impede seamless 
clinical adoption. Critical challenges include 
limited cross-institutional generalizability, 
insufficient interpretability, vulnerability to 
domain shifts, and the complexity of integrating 
AI systems into real-world neuro-oncology 
workflows. Thus, future progress must extend 
beyond incremental improvements in 
performance metrics and prioritize the 
development of clinically informed, robust, and 
transparent models . 

Looking forward, the field is poised for several 
transformative directions. Promising avenues 
include self-supervised and federated learning 
frameworks that reduce dependence on labeled 
data, real-time and resource-efficient 
segmentation pipelines suited for clinical 
environments, and multimodal systems that 
integrate MRI with molecular, 
histopathological, and clinical information to 
enhance diagnostic fidelity. Additionally, the 
establishment of regulatory-aligned 
development pipelines, standardized reporting 
practices, and rigorous multicenter validation 
protocols will be essential for narrowing the gap 
between experimental performance and routine 
clinical implementation. Ultimately, 
meaningful clinical translation will require 
sustained collaboration among clinicians, AI 
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researchers, imaging scientists, and regulatory 
stakeholders. 

 By fostering such interdisciplinary synergy, 
AI-driven segmentation systems hold the 
potential to elevate diagnostic accuracy, 
improve workflow efficiency, and contribute to 
more personalized and effective care for 
patients with brain tumors. 
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