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ABSTRACT

This paper introduces an adaptive filtering method for color image denoising that employs Particle
Swarm Optimization (PSO) to tune filter parameters. Building upon a standard mean filter baseline, the
approach uses PSO to independently adjust coefficients for each RGB channel according to the specific
characteristics of both the image and the noise present. The optimization process targets dual objectives:
minimizing Normalized Mean Squared Error (NMSE) and maximizing Signal to Noise Ratio (SNR),
while maintaining the core properties of mean filtering. Experimental validation using controlled
Gaussian noise demonstrates substantial performance gains: NMSE decreased from 4.81% to 1.11%,
and SNR improved from 13.18 dB to 19.55 dB, representing approximately four-fold enhancement over
conventional mean filtering. The method shows particular promise for applications demanding image
specific optimization, though its effectiveness varies with image content and noise characteristics.

Keywords: Color Image Processing, Particle Swarm Optimization, Noise Reduction, RGB Filtering,
Digital Image Enhancement, Adaptive Filtering.
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1. INTRODUCTION

Digital image processing has become
increasingly — important across numerous
applications as technology advances. From
medical imaging and security systems to remote
sensing and machine learning, image
processing techniques enable better information
extraction from visual data [ 1]. However, digital
images frequently suffer from quality
degradation due to noise introduced during
image capture, data transmission, or storage.
This noise corrupts image details and
complicates subsequent analysis [1].

Traditional noise reduction filters fall into two
primary categories: linear and nonlinear
methods. Linear filters operate by computing
weighted averages of pixels with their
neighbors, while nonlinear filters employ more
sophisticated operations, particularly for edge
and detail preservation [2]. A fundamental
limitation of conventional methods is their use
of fixed parameters across entire images, which
proves inadequate for the  varying
characteristics present in color images [3].

Biologically inspired optimization algorithms
offer promising alternatives to traditional
approaches. Particle Swarm Optimization
(PSO), developed by Kennedy and Eberhart in
1995, mimics the collective behavior of bird
flocks and fish schools [4]. PSO operates with
candidate solutions called "particles" that
traverse the solution space iteratively searching
for optimal results. The computational
efficiency, reasonable convergence properties,
and broad applicability of PSO make it effective
for image processing optimization problems

[5].

This work develops an adaptive filtering
approach for color images by employing PSO to
optimize mean filter parameters. The mean
filter is widely used and computationally
efficient in image processing, but its fixed
coefficients limit effectiveness across diverse

images and noise conditions. By making the
mean filter
adaptive through PSO optimization, we
preserve its simplicity and fundamental
properties  while significantly enhancing
performance. Color images present additional
complexity for noise removal because each
pixel contains three color channels: red (R),
green (G), and blue (B) [3]. We apply PSO to
each color channel individually to find filter
parameters that minimize noise more
effectively while adapting to specific
characteristics of both image content and noise
properties. We evaluate our approach using
standard metrics including NMSE and SNR [1].

The primary contributions of this work include:

e Development of an adaptive mean filtering
approach using PSO that adjusts filter
coefficients based on image and noise
characteristics

e Implementation  of  channel  specific
optimization for RGB color channels to
account for varying noise properties across
channels

e Demonstration that standard mean filters can
be transformed into powerful adaptive filters
through optimization

e Evaluation of performance improvements
achieved through adaptive filter optimization
compared to standard fixed parameter mean
filtering

This study demonstrates that PSO can transform
standard mean filters into adaptive filters
providing substantial improvements for color
image denoising. The following sections
describe  the background,
methodology, experimental results, and
analysis.

theoretical

2. BACKGROUND AND RELATED WORK

2.1 Image Processing Fundamentals
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Image processing involves applying various
operations to digital images to extract useful
information or enhance image quality [1].
Image filtering specifically addresses the
removal of noise, distortions, and unwanted
artifacts through mathematical operations that
consider relationships between pixels and their
neighbors, or by applying specific
transformations to image data.

Color images require special consideration
because each pixel contains information from
three color channels (red, green, blue). Effective
noise removal in color images often requires
processing each channel separately, as different
channels may exhibit different noise
characteristics. Filtering operations must be
carefully designed to minimize distortions
while preserving important color information

[3].

The mean filter represents one of the most
fundamental and widely used filters in image
processing. It operates by replacing each pixel
value with the average of pixel values in its
neighborhood. While computationally efficient
and simple to implement, the standard mean
filter with uniform coefficients may not perform
optimally across different images and noise
conditions. This limitation motivates the
development of adaptive filtering approaches.

2.2 Particle Swarm Optimization

Particle Swarm Optimization draws inspiration
from the collective behavior of social animals
such as bird flocks or fish schools [4]. The
algorithm maintains a population of candidate
solutions called "particles," where each particle
represents a potential solution and moves
through the solution space with a certain
velocity. Particles update their positions based
on their own experience and the experience of
the swarm.

The mathematical formulation of PSO involves
two main equations for updating particle
velocity and position:

Velocity Update:

t+1

vy =W'ULF+‘31'7'1'(1’2_9‘5)"‘52'Tz'(gb_xf) (@Y)

Position Update:

e O

Where:
e vl and x! represent the velocity and
position of particle i at time t
e p! is the best position found by particle i
e gp is the best position found by the entire
swarm
e w is the inertia weight controlling
exploration versus exploitation
e ¢, and ¢, are acceleration coefficients for
personal and social components
e 1 and r, are random numbers (0 —1)
PSO has gained popularity due to its relatively
simple implementation, reasonable
computational  requirements, and  good
performance across many optimization problems

[4][5].
2.3 Color Image Filtering Challenges

Filtering color images presents unique
challenges compared to grayscale image
processing. Each RGB channel may have
different noise characteristics, and applying
identical filters to all channels does not always
produce optimal results [3]. Some researchers
have explored channel specific approaches,
where different filtering strategies are applied to
different color components [2][6].

The application of evolutionary algorithms such
as PSO to image filtering has shown promise in
recent years. These methods can adapt filter
parameters to specific image characteristics and
noise types, potentially providing better results
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than fixed parameter approaches [5]. Our work
extends this direction by focusing specifically
on making the mean filter adaptive through PSO
optimization.

3. METHODOLOGY

Our approach processes each RGB channel
separately from a color image. We add
controlled Gaussian noise to create test
conditions, then apply an adaptive filtering
strategy based on PSO.

3.1 Image Preprocessing and Noise Addition

We begin by loading a color image and
separating it into individual RGB matrices. To
simulate conditions where images are corrupted
by noise, we add Gaussian noise to each
channel. This controlled noise addition allows
quantitative measurement of our filtering
approach effectiveness. The noise addition
process follows:

Inoisy (x' bz C) = Ioriginal (x: Y C) +w, - N(O,l) (3)

where Igisy and Ioyigina1 represent the noisy
and original images respectively, ¢ € {R, G, B}
denotes the color channel, w, is the noise
variance for channel c, and N (0,1) represents
zero mean unit variance Gaussian noise.

3.2 Adaptive Mean Filter Design

We employ 3x3 filter kernels for
computational  efficiency and  practical
applicability. The standard mean filter uses

uniform coefficients (all equal to é ), but our

adaptive approach allows these coefficients to
vary while maintaining the constraint that all
elements sum to 1 to preserve image brightness:

hyy hiz hgs
HRGB=[h21 ha2 h23] 4
h31 hzz hss
3
D hy=1 5)
i=1 j=1

The adaptive filter maintains the fundamental
structure and properties of the mean filter but
allows coefficient variation to better match
image and noise characteristics. This adaptation
is achieved through the PSO optimization
process.

3.3 Optimization Problem Formulation

The optimization problem seeks to minimize
the objective function combining NMSE and
SNR considerations:

minf (H) = aNMSE(H — j log1o(SNR(H)) (6)

where H represents the filter coefficients, & and
B are weighting parameters, and the function
operates subject to the constraint ¥; ; h;; = 1.
In our implementation, we prioritize NMSE
minimization with ¢ = 1 and § = 0.1.

3.4 PSO Implementation Details

Each particle in the PSO swarm represents a
potential filter configuration for all three RGB
channels. The particle position vector contains
27 elements (9 coefficients per channel for 3
channels). The fitness evaluation applies the
candidate filters to noisy image channels and
computes performance metrics.

The constraint that filter coefficients sum to 1 is
enforced through normalization after each
position update:

. hij
hpprmahzed — J (7)
Y z:1 2?21 hkl

Velocity  clamping  prevents  excessive

coefficient variations:

by = max (_Umax' mil’l(vmax' vij)) (®)

where v, = 0.1 based on preliminary
experiments.
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3.5 PSO Algorithm Implementation

Algorithm 1 presents the PSO based adaptive
filter optimization procedure. The algorithm
starts with the standard mean filter and
iteratively adapts the filter coefficients for each
RGB channel to minimize noise while
preserving image quality.

The algorithm stops when the convergence
tolerance € is met or the maximum iterations
Tmax 18 reached, yielding the optimized adaptive
filters for the R, G, and B channels.

Algorithm 1 Mean Filter Optimization Algorithm
Require: Original image I, noisy image Iy
Ensure: Adaptive filters H,‘gdam, Hgdam, Hgdap d

1: Initialize swarm with standard mean filter

2. Initialize personal and global best solutions

3. Apply standard mean filter and record baseline

performance
4: for each iteration do
5. for each particle do

6: Construct adaptive RGB filters from
particle position

7: Enforce filter constraint: } h;; = 1

8: Apply filters to noisy image channels

9 Evaluate fitness using NMSE and SNR
10: Update personal best if improvement found

1: Update global best if improvement found
122 end for

3 Update particle velocities using Eq. (1)

4 Update particle positions using Eq. (2)

5. Apply velocity clamping and position bounds
16: end for

17: return Adaptive RGB filters

3.6 Performance Evaluation Metrics

We employ two standard metrics to evaluate
filter performance [1]:

Normalized Mean Squared Error (NMSE):

This metric quantifies the error between original
and filtered images. Lower NMSE values
indicate better performance:

My @) —0(i))?
XN, 13)?

NMSE = €))

where (i) represents original image pixels and
0(i) represents filtered image pixels.

Signal to Noise Ratio (SNR):

SNR measures the ratio of signal power to noise
power. Higher SNR values indicate cleaner
images:

P
SNR = 10log;, P—’ (10)

w

where P; represents image power and Py,
represents noise power.

3.7 System Architecture

Figure 1 shows the overall system architecture.
The process begins with RGB channel
separation, followed by noise addition for
testing purposes, application of the standard
mean filter as baseline, PSO based adaptive
optimization, and final evaluation.

We Q -

B+

T8 —

@£+

Wi 3 o

B @_ +{H,
a@

Fig 1. System architecture for adaptive RGB
channel processing.

3.8 PSO Parameter Configuration

Based on preliminary experiments and
established practices in the literature [5], we
selected the following PSO parameters:
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e Population size (S) = 50: Provides effective
balance between solution diversity and
computational efficiency

e ¢; = 1.0 : Cognitive parameter encouraging
particles to explore based on their own
experience

e c; = 2.0: Social parameter promoting
convergence toward the global best solution

ew=20.7 : Inertia weight balancing
exploration and exploitation

® Vo = 0.1 : Maximum velocity component
to prevent excessive coefficient variations

These parameters were chosen based on
established guidelines in PSO literature and
represent a reasonable compromise between
exploration and convergence speed.

4. EXPERIMENTAL RESULTS

The filter was applied to several images to
evaluate its performance. Here, the results from
one representative test image, which in this case
is a portrait, are presented.

4.1 Test Image and Noise Characteristics

Figure 2 shows the original test image used for
evaluation.

Original Image

Fig 2. Original Test Image

We added Gaussian noise to create the
corrupted version shown in Figure 3. The noise
significantly degrades image quality, making
fine details harder to distinguish. The SNR of
the noisy image measured 11.33 dB , indicating
substantial noise corruption.

4.2 Channel Analysis

Figure 4 shows how noise affects each
individual RGB channel. The noise patterns
vary between channels, validating our approach
of optimizing filters for each channel separately
rather than using identical filters across all
channels.

Noisy Image

Fig 3. Image corrupted with Gaussian noise.

RED Noisy Image GREEN Noisy Image BLUE Noisy Image

Fig 4. Noise effects on individual RGB
channels.

4.3 Baseline Performance Analysis

The first iteration applies the standard uniform
mean filter, establishing baseline performance.
This standard mean filter achieved NMSE of

0.048088 (4.81%) and SNR of 13.18 dB ,
representing an improvement of 1.85 dB over
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the noisy image. This baseline demonstrates the
performance of traditional fixed parameter
approaches before adaptive optimization.

4.4 PSO Convergence Analysis

The PSO optimization process exhibits

systematic ~ convergence  behavior  and
progressive improvement in image quality.
Starting from baseline standard mean filter
performance, the algorithm enhances filtering
performance through iterative  adaptive

optimization of filter coefficients.

Table 1 shows the convergence progress over
the first 20 iterations. The optimization
demonstrates rapid initial improvement, with
significant gains achieved in early iterations.

By iteration 10, NMSE had improved to
0.013411(1.34%) and SNR reached 18.73
dB , representing substantial enhancement over
the initial mean filtering result.

Table 1. PSO Convergence Progress.

Iter. NMSE SNR(dB) | Iter. NMSE SNR(dB)
1 0.048088 13.18 11 0.012783 18.93
2 0.024120 16.18 12 0.012497 19.03
3 0.021662 16.64 13 0.012369 19.08
4 0.017949 17.46 14 0.011866 19.26
5 0.017520 17.56 15 0.011866 19.26
6 0.015038 18.23 16 0.011581 19.36
7 0.014621 18.35 17 0.011273 19.48
8 0.014201 18.48 18 0.011273 19.48
9 0.013941 18.56 19 0.011273 19.48
10 0.013411 18.73 20 0.011104 19.55

The final optimization results confirm the
effectiveness of the adaptive PSO approach.
The algorithm converged to optimal NMSE of
0.011104 (1.11%) and SNR of 19.55 dB,
representing dramatic improvement from the
initial mean filter baseline. This corresponds to
a 4.33 fold reduction in NMSE and a 6.37 dB
improvement in SNR compared to the standard
mean filter.

4.5 Adaptive Filter Characteristics

The algorithm successfully identified distinct
optimal adaptive filter configurations for each
RGB channel, confirming the benefit of channel
specific optimization. The converged adaptive
filter matrices are:

Adaptive Red Channel Filter:

0.1206 0.2194 0.1078
H;daptz[o.mos 0.0653 0.1034] (11)
0.1826 0.0691 —0.0290

Adaptive Green Channel Filter:

] 0.0427 0.1566 0.0780
H™ =10.0548 0.1815 0.1717|  (12)
0.1161 0.0987 0.0999

Adaptive Blue Channel Filter:

; 0.2068 0.0983 0.0188
Hy™ =10.1385 0.0113 0.0923 (13)
0.0981 0.2029 0.1329

These adaptive filters exhibit significantly
different characteristics compared to the
uniform mean filter (where all coefficients

equal g ). The adaptive filters incorporate

negative coefficients and varying emphasis
patterns specifically tailored to each color
channel's characteristics and noise properties.
These filters maintain the fundamental
constraint of the mean filter (sum of coefficients
=1) while adapting their coefficient
distribution to optimize performance for
specific image and noise conditions.

4.6 Optimized Results

After running the PSO optimization process, we
obtained improved adaptive filters for each
RGB channel. Figure 5 shows the results
achieved with these adaptive filters. The
improvement in visual quality is significant,
with better noise reduction and preserved image
details compared to the standard mean filter
baseline.
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Image Filtered with Optimal Filters

Fig 5. Results with PSO optimized adaptive
filters.

4.7 Performance Comparison

Figure 6 illustrates the performance metrics
comparison across different processing stages,
demonstrating the progression from noisy
image to standard mean filtering to adaptive
PSO optimized filtering.

FSO SNR Convergence Progress
T

SNR (dB)

Iteration
P$G NMSE Convergence Progress
T

et —¢—e—s—eo
. G -s

E

Fig 6. Performance metrics comparison across
different stages.

The performance progression can be
summarized as follows:

¢ Noisy Image:
SNR =11.33 dB
e Standard Mean Filter:
NMSE = 4.81% , SNR=13.18 dB
e Adaptive PSO Optimized Filter:
NMSE =1.11%, SNR = 19.55 dB

The improvement from standard mean filtering
to adaptive optimized results represents
remarkable enhancement, with NMSE reduced
by 77% and SNR improved by 6.37 dB . This
demonstrates that the adaptive PSO approach
significantly outperforms traditional fixed
parameter mean filtering methods.

4.8 Enhanced Processing Pipeline

To demonstrate the adaptability of the PSO
optimized approach as a preliminary filtering
stage, we applied a median filter as a post
processing step. This hybrid approach treats the
PSO optimized adaptive linear filter as an initial
denoising stage, followed by nonlinear median
filtering to further enhance results.

The combined approach achieved:

e NMSE: 0.0055 (additional 51% reduction)
e SNR: 22.61 dB (gain: 3.06 dB)

Image filtered with Median filter

Fig 7. Post-Processing Result Using Median
Filter.

4.9 Algorithm Benchmarking

To further validate the selection of PSO as the

optimization  technique, we  conducted
additional experiments on a different test image
and compared PSO's performance against two
other popular metaheuristic algorithms: Genetic
Algorithm (GA) and Ant Colony Optimization
(ACO). All three algorithms were configured

with comparable population sizes and iteration
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limits to ensure fair comparison. In addition to
NMSE and SNR, we also evaluated
performance using the Structural Similarity
Index (SSIM) [7], which measures perceptual
similarity between two images based on
luminance, contrast, and structure, with values
ranging from -1 to 1 (where 1 indicates perfect
similarity):

(2uxny + €1)(20,, + C,)

SSIM(x,y) = (2 +p2+C)(a2+ 02 +C,)

(14)

where i, and p,, are the mean intensities, o?
and aﬁ are the variances, 0y, is the covariance,

and C; and C, are stabilization constants.

Figure 8 presents a visual comparison of the
complete filtering pipeline for this additional
test case, showing the original image, the
corrupted noisy version, the result after PSO
optimized adaptive filtering, and the final result
after applying median filter post processing.
The progressive improvement in image quality
through each stage is clearly evident.

Original image

Noisy image (Gaussian)

PSO result + Median filter

PSO optimized filter result

Fig 8. Visual comparison of filtering stages:
original, noisy, PSO filtered, and median post-
processed results.

Figure 9 shows the convergence behavior of
PSO, GA, and ACO across the three
performance metrics: NMSE, SNR, and SSIM.
The convergence
differences in

curves reveal distinct
algorithm behavior. PSO

demonstrates faster convergence and maintains
steady progress throughout the optimization
process, with smooth, continuous improvement
and minimal oscillations. In contrast, both GA
and ACO exhibit more erratic convergence
patterns with noticeable fluctuations. While
these algorithms eventually reach comparable
performance levels, their convergence paths are
less stable and require more iterations to
achieve similar results. The consistent
trajectory of PSO indicates better exploration
exploitation balance, which is particularly
valuable for image filtering applications where
stability and predictability are important.

WSEC S0V GRS ACO)
T

0 i 2@ El
Iteration
SNR Convergence (PSO vs GA vs ACO

T 1 ] W
ligration
51N Convergence (PSO vs GA vs ACO)

X kil Ll 5
lferaticn

Fig 9. Convergence comparison of PSO, GA,
and ACO across NMSE, SNR, and SSIM
metrics.

Table 2 summarizes the performance
measurements for the best algorithm ( PSO )
across all processing stages for this additional
test image. The results demonstrate progressive
improvement through each stage of the filtering
pipeline.

Table 2. Image Quality Metrics Across Processing

Stages.
Processing Stage NMSE SNR (dB) SSIM
Noisy image 0.1424 9.83 03323
(before filtering)
PSO Optimization Progress
First iteration 0.0751 11.52 0.3800
( baseline)
Last iteration 0.0340 15.93 0.6202
( cony Prgpd)
Final Filtering Results
PSO optimized filter 0.0340 15.93 0.6202
PSO + Median filter 0.0201 18.24 0.7441
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These experimental results confirm the choice
of PSO as the primary optimization technique
for this work. The algorithm's superior
convergence characteristics, combined with its
computational efficiency and the existing body
of literature supporting its effectiveness in
image processing tasks [4][5], justify its
selection over alternative metaheuristic
approaches. The smooth convergence behavior
also suggests that PSO is less sensitive to
parameter tuning compared to GA and ACO,
making it more practical for adaptive filtering
applications.

5. DISCUSSION AND ANALYSIS

The experimental results demonstrate that PSO
can transform standard mean filters into
adaptive  filters  providing  significant
improvements for color image noise reduction.
The 4-fold improvement in NMSE and
substantial SNR enhancement indicate that the
adaptive optimization process successfully
finds better filter configurations than the
standard uniform mean filter baseline.

5.1 Adaptive Filter Performance

The transformation of the standard mean filter
into an adaptive filter through PSO optimization
proves highly effective. While maintaining
fundamental properties and constraints of the
mean filter (coefficients sum to 1, similar
computational complexity), the adaptive
approach  achieves  dramatically  better
performance. This demonstrates
that widely used filters can be significantly
enhanced  through  optimization  based
adaptation to specific image and noise
characteristics.

The effectiveness of the adaptive filter depends
critically on image content and noise properties.
Different images with different noise levels
result in different optimal adaptive filters,
which represents the strength of this approach.
The PSO optimization process automatically
tailors the filter to specific conditions,

eliminating the need for manual parameter
tuning.

5.2 Channel Optimization Benefits

The convergence of PSO to different filter
coefficients for each RGB channel validates our
approach of treating channels separately [3].
This indicates that different color channels have
different optimal filtering requirements, even
when subjected to the same noise conditions.
The adaptive filters for R,G, and B channels
show distinct coefficient patterns, suggesting
that channel specific adaptation benefits color
image processing [6].

5.3 Computational Analysis and Real Time
Prediction

While PSO traditionally requires additional
computational time for optimization, this
process can be effectively bypassed for similar
images through the use of deep learning [8]. By
training a model on optimized adaptive filters,
the system can learn to predict suitable filters
for new images in near real-time based on image
features such as color distribution, texture, and
noise characteristics. This approach allows
reusing the learned model to approximate
optimal filters without performing the full PSO
optimization for each new image, significantly
reducing computational overhead while
maintaining high image quality.

5.4 Method Limitations

Our current approach addresses Gaussian noise,
which is prevalent but not the only noise type
encountered in practice. The method requires
additional testing and possibly modification for
other noise types such as impulse noise or
Poisson noise. However, the adaptive
framework is general and could potentially be
extended to other noise models.

The 3 x 3 filter size represents a compromise
between computational efficiency and filtering
capability. Larger filters might achieve better
results but would require more computational
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resources and longer optimization times. The
choice of filter size should be based on specific
application  requirements and available
computational resources.

5.5 Application Areas

This adaptive filtering approach could prove
valuable in applications where image quality is
important, such as medical imaging, satellite
imagery processing, or digital photography
enhancement. The method could be particularly
useful in situations where images are
consistently captured under similar conditions,
allowing for offline optimization and online
application of adaptive filters.

6. FUTURE RESEARCH DIRECTIONS

Several areas merit further investigation to
extend this work:

6.1 Filter Size Optimization

Exploring filter sizes such as 5 X5 or 7 X 7
might yield better results, though computational
complexity  would Adaptive
determination of optimal filter size based on
image characteristics could also be investigated.

Increase.

6.2 Hybrid Filtering Systems

The promising results from combining linear
and nonlinear filters suggest that more
sophisticated hybrid approaches might achieve
better performance. Investigating combinations
of adaptive linear filters with various nonlinear
filters could lead to further improvements.

6.3 Deep Learning Filter Prediction

As a next step, deep learning can be used to
estimate filter parameters directly from the
image instead of running PSO each time. By
training a model on images and their optimized
filters, the system could quickly suggest
suitable settings for new images with far less
computation. This would make the method

faster and more practical, especially for
applications that require near real-time
processing.

7. CONCLUSION

This study demonstrates that Particle Swarm
provides
improvements to standard mean filtering
approaches for color images by making the

Optimization significant

filter —adaptive to image and noise
characteristics. By optimizing filter parameters
for each RGB channel individually while
maintaining fundamental properties of the mean
filter, we achieved substantial improvements in
both quantitative metrics and visual quality.
The key findings include:

e PSO optimized adaptive filters reduced
NMSE by approximately 4 fold compared to
standard mean filtering

e The adaptive approach maintains the
simplicity and constraints of mean filtering
while dramatically improving performance

e The effectiveness depends on image content
and noise characteristics, making it suitable
for image specific optimization

e Channel specific optimization proved
beneficial, with PSO finding different optimal
adaptive filters for each RGB channel

e The approach maintains computational
practicality while delivering significant
quality improvements

e Combining the adaptive filter with other
filtering techniques shows potential for
further enhancements

e Results showed that PSO exhibits more stable,
faster, and more reliable convergence
compared to other similar optimization
algorithms.

Although our work focused on Gaussian noise
and 3 X 3 filters, the general approach of using
evolutionary optimization to transform standard
filters into adaptive filters shows considerable
promise. The method could be valuable in
applications where consistent image quality
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improvements are needed and computational
resources allow for optimization processing.

The results indicate opportunities for
improvement in traditional image processing
approaches through the application of modern
optimization techniques. As computational
resources become more accessible, such
adaptive approaches may become increasingly
practical for various applications
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