

## Adaptive and Optimized RGB Channel Filtering for Noise Reduction in Color Images

Abdelbary M. Algamel<sup>1,2</sup>

<sup>1</sup>Libyan Center for Engineering Research and Information Technology, Bani Walid, Libya.

<sup>2</sup>Department of Electrical and Electronics Engineering, Pamukkale University, Denizli, Turkey.

\*Corresponding author email: [aalgamel23@posta.pau.edu.tr](mailto:aalgamel23@posta.pau.edu.tr)

Received: 30-09-2025 | Accepted: 25-11-2025 | Available online: 25-12-2025| DOI:10.26629/jtr.2025.52

### ABSTRACT

This paper introduces an adaptive filtering method for color image denoising that employs Particle Swarm Optimization (PSO) to tune filter parameters. Building upon a standard mean filter baseline, the approach uses PSO to independently adjust coefficients for each RGB channel according to the specific characteristics of both the image and the noise present. The optimization process targets dual objectives: minimizing Normalized Mean Squared Error (NMSE) and maximizing Signal to Noise Ratio (SNR), while maintaining the core properties of mean filtering. Experimental validation using controlled Gaussian noise demonstrates substantial performance gains: NMSE decreased from 4.81% to 1.11%, and SNR improved from 13.18 dB to 19.55 dB, representing approximately four-fold enhancement over conventional mean filtering. The method shows particular promise for applications demanding image specific optimization, though its effectiveness varies with image content and noise characteristics.

**Keywords:** Color Image Processing, Particle Swarm Optimization, Noise Reduction, RGB Filtering, Digital Image Enhancement, Adaptive Filtering.

## الترشيح التكيفي والمُحسن لقنوات RGB لتقليل التشويش في الصور الملونة

عبدالباري مصطفى الجمل<sup>1,2</sup>

<sup>1</sup> المركز الليبي للبحوث الهندسية وتقنية المعلومات، بنى وليد، ليبيا.

<sup>2</sup> قسم الهندسة الكهربائية والإلكترونية، جامعة باموكالي، دينيزلي، تركيا.

### ملخص البحث

يقدم البحث طريقة ترشيح تكيفية لإزالة التشويش من الصور الملونة بإستخدام خوارزمية تحسين سرب الجسيمات (PSO). تعمل الخوارزمية على ضبط معاملات المرشح لكل قناة (RGB) بناءً على خصائص الصورة والتشويش المسلط عليها، وذلك بهدف تقليل متوسط مربع الخطأ المعياري (NMSE) وزيادة نسبة الإشارة إلى الضوضاء (SNR). حيث أظهرت النتائج تحسناً ملحوظاً في هذه القيم، تتمثل في إنخفاض قيم (NMSE) من 4.81% إلى 1.11% وتحسين قيم (SNR) من 13.18 ديسيل إلى 19.55 ديسيل بعد تطبيق عناصر الفلتر المُحسن والتكيفي، مما نتج عنه تحسن يعادل حوالي أربعة أضعاف المرشح التقليدي المتوسط العادي (Mean Filter). يعتمد النهج المقترن في هذه الورقة على تطوير المرشح المتوسط التقليدي من خلال تحسين عناصره تكيفياً للحصول على أفضل نتائج ممكنة، مع الحفاظ على خصائصه الأساسية.

**الكلمات الدالة:** معالجة الصور الملونة، خوارزمية تحسين سرب الجسيمات PSO، تقليل الضوضاء، ترشيح القنوات اللونية RGB، تحسين الصور الرقمية، الترشيح التكيفي.

## 1. INTRODUCTION

Digital image processing has become increasingly important across numerous applications as technology advances. From medical imaging and security systems to remote sensing and machine learning, image processing techniques enable better information extraction from visual data [1]. However, digital images frequently suffer from quality degradation due to noise introduced during image capture, data transmission, or storage. This noise corrupts image details and complicates subsequent analysis [1].

Traditional noise reduction filters fall into two primary categories: linear and nonlinear methods. Linear filters operate by computing weighted averages of pixels with their neighbors, while nonlinear filters employ more sophisticated operations, particularly for edge and detail preservation [2]. A fundamental limitation of conventional methods is their use of fixed parameters across entire images, which proves inadequate for the varying characteristics present in color images [3].

Biologically inspired optimization algorithms offer promising alternatives to traditional approaches. Particle Swarm Optimization (PSO), developed by Kennedy and Eberhart in 1995, mimics the collective behavior of bird flocks and fish schools [4]. PSO operates with candidate solutions called "particles" that traverse the solution space iteratively searching for optimal results. The computational efficiency, reasonable convergence properties, and broad applicability of PSO make it effective for image processing optimization problems [5].

This work develops an adaptive filtering approach for color images by employing PSO to optimize mean filter parameters. The mean filter is widely used and computationally efficient in image processing, but its fixed coefficients limit effectiveness across diverse

images and noise conditions. By making the mean filter adaptive through PSO optimization, we preserve its simplicity and fundamental properties while significantly enhancing performance. Color images present additional complexity for noise removal because each pixel contains three color channels: red (R), green (G), and blue (B) [3]. We apply PSO to each color channel individually to find filter parameters that minimize noise more effectively while adapting to specific characteristics of both image content and noise properties. We evaluate our approach using standard metrics including NMSE and SNR [1].

The primary contributions of this work include:

- Development of an adaptive mean filtering approach using PSO that adjusts filter coefficients based on image and noise characteristics
- Implementation of channel specific optimization for RGB color channels to account for varying noise properties across channels
- Demonstration that standard mean filters can be transformed into powerful adaptive filters through optimization
- Evaluation of performance improvements achieved through adaptive filter optimization compared to standard fixed parameter mean filtering

This study demonstrates that PSO can transform standard mean filters into adaptive filters providing substantial improvements for color image denoising. The following sections describe the theoretical background, methodology, experimental results, and analysis.

## 2. BACKGROUND AND RELATED WORK

### 2.1 Image Processing Fundamentals

Image processing involves applying various operations to digital images to extract useful information or enhance image quality [1]. Image filtering specifically addresses the removal of noise, distortions, and unwanted artifacts through mathematical operations that consider relationships between pixels and their neighbors, or by applying specific transformations to image data.

Color images require special consideration because each pixel contains information from three color channels (red, green, blue). Effective noise removal in color images often requires processing each channel separately, as different channels may exhibit different noise characteristics. Filtering operations must be carefully designed to minimize distortions while preserving important color information [3].

The mean filter represents one of the most fundamental and widely used filters in image processing. It operates by replacing each pixel value with the average of pixel values in its neighborhood. While computationally efficient and simple to implement, the standard mean filter with uniform coefficients may not perform optimally across different images and noise conditions. This limitation motivates the development of adaptive filtering approaches.

## 2.2 Particle Swarm Optimization

Particle Swarm Optimization draws inspiration from the collective behavior of social animals such as bird flocks or fish schools [4]. The algorithm maintains a population of candidate solutions called "particles," where each particle represents a potential solution and moves through the solution space with a certain velocity. Particles update their positions based on their own experience and the experience of the swarm.

The mathematical formulation of PSO involves two main equations for updating particle velocity and position:

### Velocity Update:

$$v_i^{t+1} = w \cdot v_i^t + c_1 \cdot r_1 \cdot (p_b^i - x_i^t) + c_2 \cdot r_2 \cdot (g_b - x_i^t) \quad (1)$$

### Position Update:

$$x_i^{t+1} = x_i^t + v_i^{t+1} \quad (2)$$

Where:

- $v_i^t$  and  $x_i^t$  represent the velocity and position of particle  $i$  at time  $t$
- $p_b^i$  is the best position found by particle  $i$
- $g_b$  is the best position found by the entire swarm
- $w$  is the inertia weight controlling exploration versus exploitation
- $c_1$  and  $c_2$  are acceleration coefficients for personal and social components
- $r_1$  and  $r_2$  are random numbers (0 – 1)

PSO has gained popularity due to its relatively simple implementation, reasonable computational requirements, and good performance across many optimization problems [4][5].

## 2.3 Color Image Filtering Challenges

Filtering color images presents unique challenges compared to grayscale image processing. Each RGB channel may have different noise characteristics, and applying identical filters to all channels does not always produce optimal results [3]. Some researchers have explored channel specific approaches, where different filtering strategies are applied to different color components [2][6].

The application of evolutionary algorithms such as PSO to image filtering has shown promise in recent years. These methods can adapt filter parameters to specific image characteristics and noise types, potentially providing better results

than fixed parameter approaches [5]. Our work extends this direction by focusing specifically on making the mean filter adaptive through PSO optimization.

### 3. METHODOLOGY

Our approach processes each RGB channel separately from a color image. We add controlled Gaussian noise to create test conditions, then apply an adaptive filtering strategy based on PSO.

#### 3.1 Image Preprocessing and Noise Addition

We begin by loading a color image and separating it into individual RGB matrices. To simulate conditions where images are corrupted by noise, we add Gaussian noise to each channel. This controlled noise addition allows quantitative measurement of our filtering approach effectiveness. The noise addition process follows:

$$I_{\text{noisy}}(x, y, c) = I_{\text{original}}(x, y, c) + w_c \cdot \mathcal{N}(0, 1) \quad (3)$$

where  $I_{\text{noisy}}$  and  $I_{\text{original}}$  represent the noisy and original images respectively,  $c \in \{R, G, B\}$  denotes the color channel,  $w_c$  is the noise variance for channel  $c$ , and  $\mathcal{N}(0, 1)$  represents zero mean unit variance Gaussian noise.

#### 3.2 Adaptive Mean Filter Design

We employ  $3 \times 3$  filter kernels for computational efficiency and practical applicability. The standard mean filter uses uniform coefficients (all equal to  $\frac{1}{9}$ ), but our adaptive approach allows these coefficients to vary while maintaining the constraint that all elements sum to 1 to preserve image brightness:

$$H_{RGB} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \quad (4)$$

$$\sum_{i=1}^3 \sum_{j=1}^3 h_{ij} = 1 \quad (5)$$

The adaptive filter maintains the fundamental structure and properties of the mean filter but allows coefficient variation to better match image and noise characteristics. This adaptation is achieved through the PSO optimization process.

#### 3.3 Optimization Problem Formulation

The optimization problem seeks to minimize the objective function combining NMSE and SNR considerations:

$$\min_H f(H) = \alpha \text{NMSE}(H) - \beta \log_{10}(\text{SNR}(H)) \quad (6)$$

where  $H$  represents the filter coefficients,  $\alpha$  and  $\beta$  are weighting parameters, and the function operates subject to the constraint  $\sum_{i,j} h_{ij} = 1$ . In our implementation, we prioritize NMSE minimization with  $\alpha = 1$  and  $\beta = 0.1$ .

#### 3.4 PSO Implementation Details

Each particle in the PSO swarm represents a potential filter configuration for all three RGB channels. The particle position vector contains 27 elements (9 coefficients per channel for 3 channels). The fitness evaluation applies the candidate filters to noisy image channels and computes performance metrics.

The constraint that filter coefficients sum to 1 is enforced through normalization after each position update:

$$h_{ij}^{\text{normalized}} = \frac{h_{ij}}{\sum_{k=1}^3 \sum_{l=1}^3 h_{kl}} \quad (7)$$

Velocity clamping prevents excessive coefficient variations:

$$v_{ij} = \max(-v_{\max}, \min(v_{\max}, v_{ij})) \quad (8)$$

where  $v_{\max} = 0.1$  based on preliminary experiments.

### 3.5 PSO Algorithm Implementation

Algorithm 1 presents the PSO based adaptive filter optimization procedure. The algorithm starts with the standard mean filter and iteratively adapts the filter coefficients for each RGB channel to minimize noise while preserving image quality.

The algorithm stops when the convergence tolerance  $\varepsilon$  is met or the maximum iterations  $T_{\max}$  is reached, yielding the optimized adaptive filters for the R, G, and B channels.

#### Algorithm 1 Mean Filter Optimization Algorithm

```

Require: Original image  $I$ , noisy image  $I_W$ 
Ensure: Adaptive filters  $H_R^{adapt}$ ,  $H_G^{adapt}$ ,  $H_B^{adapt}$ 
1: Initialize swarm with standard mean filter
2: Initialize personal and global best solutions
3: Apply standard mean filter and record baseline
   performance
4: for each iteration do
5:   for each particle do
6:     Construct adaptive RGB filters from
       particle position
7:     Enforce filter constraint:  $\sum h_{ij} = 1$ 
8:     Apply filters to noisy image channels
9:     Evaluate fitness using NMSE and SNR
10:    Update personal best if improvement found
11:    Update global best if improvement found
12:   end for
13:   Update particle velocities using Eq. (1)
14:   Update particle positions using Eq. (2)
15:   Apply velocity clamping and position bounds
16: end for
17: return Adaptive RGB filters

```

### 3.6 Performance Evaluation Metrics

We employ two standard metrics to evaluate filter performance [1]:

#### Normalized Mean Squared Error (NMSE):

This metric quantifies the error between original and filtered images. Lower NMSE values indicate better performance:

$$NMSE = \frac{\sum_{i=1}^N (I(i) - O(i))^2}{\sum_{i=1}^N I(i)^2} \quad (9)$$

where  $I(i)$  represents original image pixels and  $O(i)$  represents filtered image pixels.

#### Signal to Noise Ratio (SNR):

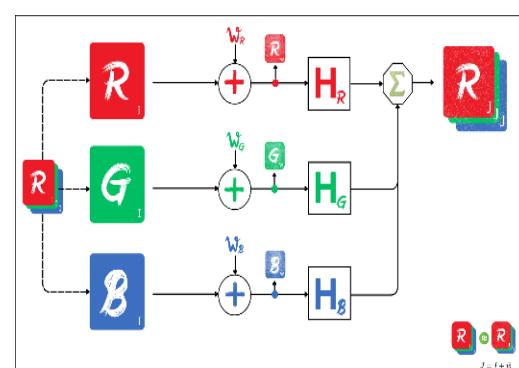
SNR measures the ratio of signal power to noise power. Higher SNR values indicate cleaner images:

$$SNR = 10\log_{10} \frac{P_I}{P_W} \quad (10)$$

where  $P_I$  represents image power and  $P_W$  represents noise power.

### 3.7 System Architecture

Figure 1 shows the overall system architecture. The process begins with RGB channel separation, followed by noise addition for testing purposes, application of the standard mean filter as baseline, PSO based adaptive optimization, and final evaluation.



**Fig 1.** System architecture for adaptive RGB channel processing.

#### 3.8 PSO Parameter Configuration

Based on preliminary experiments and established practices in the literature [5], we selected the following PSO parameters:

- Population size (S) = 50: Provides effective balance between solution diversity and computational efficiency
- $c_1 = 1.0$  : Cognitive parameter encouraging particles to explore based on their own experience
- $c_2 = 2.0$ : Social parameter promoting convergence toward the global best solution
- $w = 0.7$  : Inertia weight balancing exploration and exploitation
- $v_{\max} = 0.1$  : Maximum velocity component to prevent excessive coefficient variations

These parameters were chosen based on established guidelines in PSO literature and represent a reasonable compromise between exploration and convergence speed.

#### 4. EXPERIMENTAL RESULTS

The filter was applied to several images to evaluate its performance. Here, the results from one representative test image, which in this case is a portrait, are presented.

##### 4.1 Test Image and Noise Characteristics

Figure 2 shows the original test image used for evaluation.



**Fig 2.** Original Test Image

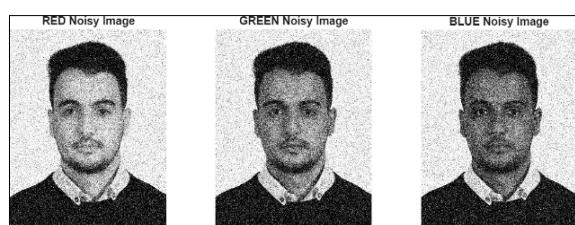
We added Gaussian noise to create the corrupted version shown in Figure 3. The noise significantly degrades image quality, making fine details harder to distinguish. The SNR of the noisy image measured **11.33 dB**, indicating substantial noise corruption.

##### 4.2 Channel Analysis

Figure 4 shows how noise affects each individual RGB channel. The noise patterns vary between channels, validating our approach of optimizing filters for each channel separately rather than using identical filters across all channels.



**Fig 3.** Image corrupted with Gaussian noise.



**Fig 4.** Noise effects on individual RGB channels.

##### 4.3 Baseline Performance Analysis

The first iteration applies the standard uniform mean filter, establishing baseline performance. This standard mean filter achieved **NMSE** of **0.048088 (4.81%)** and **SNR** of **13.18 dB**, representing an improvement of **1.85 dB** over

the noisy image. This baseline demonstrates the performance of traditional fixed parameter approaches before adaptive optimization.

#### 4.4 PSO Convergence Analysis

The PSO optimization process exhibits systematic convergence behavior and progressive improvement in image quality. Starting from baseline standard mean filter performance, the algorithm enhances filtering performance through iterative adaptive optimization of filter coefficients.

Table 1 shows the convergence progress over the first 20 iterations. The optimization demonstrates rapid initial improvement, with significant gains achieved in early iterations.

By iteration 10, NMSE had improved to **0.013411(1.34%)** and SNR reached **18.73 dB**, representing substantial enhancement over the initial mean filtering result.

**Table 1.** PSO Convergence Progress.

| Iter. | NMSE            | SNR(dB)      | Iter.     | NMSE            | SNR(dB)      |
|-------|-----------------|--------------|-----------|-----------------|--------------|
| 1     | 0.048088        | 13.18        | 11        | 0.012783        | 18.93        |
| 2     | 0.024120        | 16.18        | 12        | 0.012497        | 19.03        |
| 3     | 0.021662        | 16.64        | 13        | 0.012369        | 19.08        |
| 4     | 0.017949        | 17.46        | 14        | 0.011866        | 19.26        |
| 5     | 0.017520        | 17.56        | 15        | 0.011866        | 19.26        |
| 6     | 0.015038        | 18.23        | 16        | 0.011581        | 19.36        |
| 7     | 0.014621        | 18.35        | 17        | 0.011273        | 19.48        |
| 8     | 0.014201        | 18.48        | 18        | 0.011273        | 19.48        |
| 9     | 0.013941        | 18.56        | 19        | 0.011273        | 19.48        |
| 10    | <b>0.013411</b> | <b>18.73</b> | <b>20</b> | <b>0.011104</b> | <b>19.55</b> |

The final optimization results confirm the effectiveness of the adaptive PSO approach. The algorithm converged to optimal NMSE of 0.011104 (1.11%) and SNR of 19.55 dB, representing dramatic improvement from the initial mean filter baseline. This corresponds to a **4.33 fold** reduction in NMSE and a **6.37 dB** improvement in SNR compared to the standard mean filter.

#### 4.5 Adaptive Filter Characteristics

The algorithm successfully identified distinct optimal adaptive filter configurations for each RGB channel, confirming the benefit of channel specific optimization. The converged adaptive filter matrices are:

##### Adaptive Red Channel Filter:

$$H_R^{\text{adapt}} = \begin{bmatrix} 0.1206 & 0.2194 & 0.1078 \\ 0.1608 & 0.0653 & 0.1034 \\ 0.1826 & 0.0691 & -0.0290 \end{bmatrix} \quad (11)$$

##### Adaptive Green Channel Filter:

$$H_G^{\text{adapt}} = \begin{bmatrix} 0.0427 & 0.1566 & 0.0780 \\ 0.0548 & 0.1815 & 0.1717 \\ 0.1161 & 0.0987 & 0.0999 \end{bmatrix} \quad (12)$$

##### Adaptive Blue Channel Filter:

$$H_B^{\text{adapt}} = \begin{bmatrix} 0.2068 & 0.0983 & 0.0188 \\ 0.1385 & 0.0113 & 0.0923 \\ 0.0981 & 0.2029 & 0.1329 \end{bmatrix} \quad (13)$$

These adaptive filters exhibit significantly different characteristics compared to the uniform mean filter (where all coefficients equal  $\frac{1}{9}$ ). The adaptive filters incorporate negative coefficients and varying emphasis patterns specifically tailored to each color channel's characteristics and noise properties. These filters maintain the fundamental constraint of the mean filter (sum of coefficients = 1) while adapting their coefficient distribution to optimize performance for specific image and noise conditions.

#### 4.6 Optimized Results

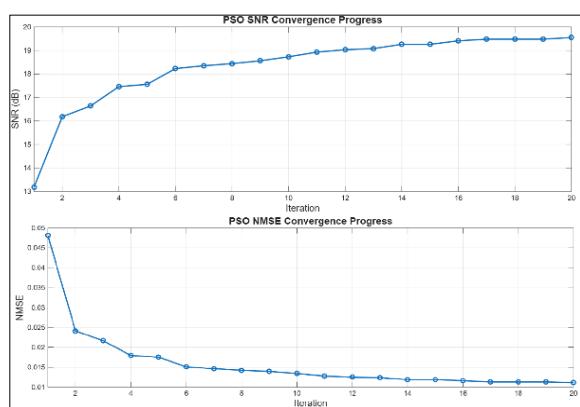
After running the PSO optimization process, we obtained improved adaptive filters for each RGB channel. Figure 5 shows the results achieved with these adaptive filters. The improvement in visual quality is significant, with better noise reduction and preserved image details compared to the standard mean filter baseline.



**Fig 5.** Results with PSO optimized adaptive filters.

#### 4.7 Performance Comparison

Figure 6 illustrates the performance metrics comparison across different processing stages, demonstrating the progression from noisy image to standard mean filtering to adaptive PSO optimized filtering.



**Fig 6.** Performance metrics comparison across different stages.

The performance progression can be summarized as follows:

- Noisy Image:  
**SNR = 11.33 dB**
- Standard Mean Filter:  
**NMSE = 4.81% , SNR = 13.18 dB**
- Adaptive PSO Optimized Filter:  
**NMSE = 1.11% , SNR = 19.55 dB**

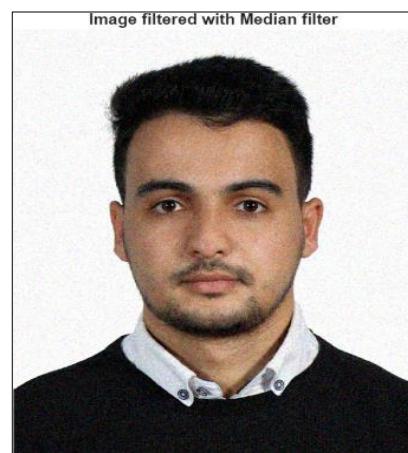
The improvement from standard mean filtering to adaptive optimized results represents remarkable enhancement, with NMSE reduced by 77% and SNR improved by 6.37 dB. This demonstrates that the adaptive PSO approach significantly outperforms traditional fixed parameter mean filtering methods.

#### 4.8 Enhanced Processing Pipeline

To demonstrate the adaptability of the PSO optimized approach as a preliminary filtering stage, we applied a median filter as a post processing step. This hybrid approach treats the PSO optimized adaptive linear filter as an initial denoising stage, followed by nonlinear median filtering to further enhance results.

The combined approach achieved:

- NMSE: **0.0055** (additional 51% reduction)
- SNR: **22.61 dB** (gain: 3.06 dB )



**Fig 7.** Post-Processing Result Using Median Filter.

#### 4.9 Algorithm Benchmarking

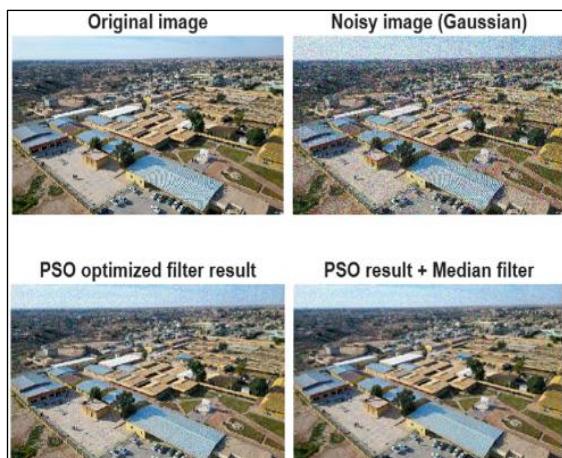
To further validate the selection of PSO as the optimization technique, we conducted additional experiments on a different test image and compared PSO's performance against two other popular metaheuristic algorithms: Genetic Algorithm (GA) and Ant Colony Optimization (ACO). All three algorithms were configured with comparable population sizes and iteration

limits to ensure fair comparison. In addition to NMSE and SNR, we also evaluated performance using the Structural Similarity Index (SSIM) [7], which measures perceptual similarity between two images based on luminance, contrast, and structure, with values ranging from -1 to 1 (where 1 indicates perfect similarity):

$$\text{SSIM}(x, y) = \frac{(2\mu_x\mu_y + C_1)(2\sigma_{xy} + C_2)}{(\mu_x^2 + \mu_y^2 + C_1)(\sigma_x^2 + \sigma_y^2 + C_2)} \quad (14)$$

where  $\mu_x$  and  $\mu_y$  are the mean intensities,  $\sigma_x^2$  and  $\sigma_y^2$  are the variances,  $\sigma_{xy}$  is the covariance, and  $C_1$  and  $C_2$  are stabilization constants.

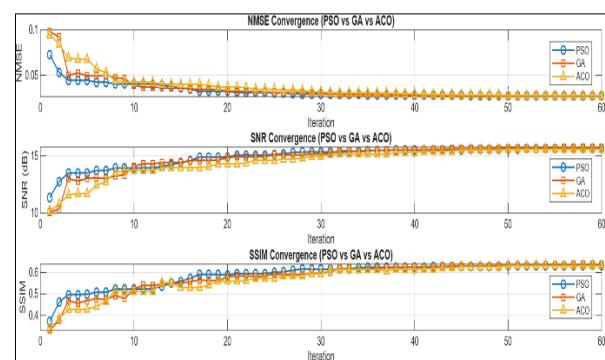
Figure 8 presents a visual comparison of the complete filtering pipeline for this additional test case, showing the original image, the corrupted noisy version, the result after PSO optimized adaptive filtering, and the final result after applying median filter post processing. The progressive improvement in image quality through each stage is clearly evident.



**Fig 8.** Visual comparison of filtering stages: original, noisy, PSO filtered, and median post-processed results.

Figure 9 shows the convergence behavior of PSO, GA, and ACO across the three performance metrics: NMSE, SNR, and SSIM. The convergence curves reveal distinct differences in algorithm behavior. PSO

demonstrates faster convergence and maintains steady progress throughout the optimization process, with smooth, continuous improvement and minimal oscillations. In contrast, both GA and ACO exhibit more erratic convergence patterns with noticeable fluctuations. While these algorithms eventually reach comparable performance levels, their convergence paths are less stable and require more iterations to achieve similar results. The consistent trajectory of PSO indicates better exploration exploitation balance, which is particularly valuable for image filtering applications where stability and predictability are important.



**Fig 9.** Convergence comparison of PSO, GA, and ACO across NMSE, SNR, and SSIM metrics.

Table 2 summarizes the performance measurements for the best algorithm (PSO) across all processing stages for this additional test image. The results demonstrate progressive improvement through each stage of the filtering pipeline.

**Table 2.** Image Quality Metrics Across Processing Stages

| Processing Stage                 | NMSE          | SNR (dB)     | SSIM          |
|----------------------------------|---------------|--------------|---------------|
| Noisy image (before filtering)   | 0.1424        | 9.83         | 0.3323        |
| <b>PSO Optimization Progress</b> |               |              |               |
| First iteration (baseline)       | 0.0751        | 11.52        | 0.3800        |
| Last iteration (converged)       | 0.0340        | 15.93        | 0.6202        |
| <b>Final Filtering Results</b>   |               |              |               |
| PSO optimized filter             | 0.0340        | 15.93        | 0.6202        |
| PSO + Median filter              | <b>0.0201</b> | <b>18.24</b> | <b>0.7441</b> |

These experimental results confirm the choice of PSO as the primary optimization technique for this work. The algorithm's superior convergence characteristics, combined with its computational efficiency and the existing body of literature supporting its effectiveness in image processing tasks [4][5], justify its selection over alternative metaheuristic approaches. The smooth convergence behavior also suggests that PSO is less sensitive to parameter tuning compared to GA and ACO, making it more practical for adaptive filtering applications.

## 5. DISCUSSION AND ANALYSIS

The experimental results demonstrate that PSO can transform standard mean filters into adaptive filters providing significant improvements for color image noise reduction. The 4-fold improvement in NMSE and substantial SNR enhancement indicate that the adaptive optimization process successfully finds better filter configurations than the standard uniform mean filter baseline.

### 5.1 Adaptive Filter Performance

The transformation of the standard mean filter into an adaptive filter through PSO optimization proves highly effective. While maintaining fundamental properties and constraints of the mean filter (coefficients sum to 1, similar computational complexity), the adaptive approach achieves dramatically better performance. This demonstrates that widely used filters can be significantly enhanced through optimization based adaptation to specific image and noise characteristics.

The effectiveness of the adaptive filter depends critically on image content and noise properties. Different images with different noise levels result in different optimal adaptive filters, which represents the strength of this approach. The PSO optimization process automatically tailors the filter to specific conditions,

eliminating the need for manual parameter tuning.

### 5.2 Channel Optimization Benefits

The convergence of PSO to different filter coefficients for each RGB channel validates our approach of treating channels separately [3]. This indicates that different color channels have different optimal filtering requirements, even when subjected to the same noise conditions. The adaptive filters for R, G, and B channels show distinct coefficient patterns, suggesting that channel specific adaptation benefits color image processing [6].

### 5.3 Computational Analysis and Real Time Prediction

While PSO traditionally requires additional computational time for optimization, this process can be effectively bypassed for similar images through the use of deep learning [8]. By training a model on optimized adaptive filters, the system can learn to predict suitable filters for new images in near real-time based on image features such as color distribution, texture, and noise characteristics. This approach allows reusing the learned model to approximate optimal filters without performing the full PSO optimization for each new image, significantly reducing computational overhead while maintaining high image quality.

### 5.4 Method Limitations

Our current approach addresses Gaussian noise, which is prevalent but not the only noise type encountered in practice. The method requires additional testing and possibly modification for other noise types such as impulse noise or Poisson noise. However, the adaptive framework is general and could potentially be extended to other noise models.

The  $3 \times 3$  filter size represents a compromise between computational efficiency and filtering capability. Larger filters might achieve better results but would require more computational

resources and longer optimization times. The choice of filter size should be based on specific application requirements and available computational resources.

### 5.5 Application Areas

This adaptive filtering approach could prove valuable in applications where image quality is important, such as medical imaging, satellite imagery processing, or digital photography enhancement. The method could be particularly useful in situations where images are consistently captured under similar conditions, allowing for offline optimization and online application of adaptive filters.

## 6. FUTURE RESEARCH DIRECTIONS

Several areas merit further investigation to extend this work:

### 6.1 Filter Size Optimization

Exploring filter sizes such as  $5 \times 5$  or  $7 \times 7$  might yield better results, though computational complexity would increase. Adaptive determination of optimal filter size based on image characteristics could also be investigated.

### 6.2 Hybrid Filtering Systems

The promising results from combining linear and nonlinear filters suggest that more sophisticated hybrid approaches might achieve better performance. Investigating combinations of adaptive linear filters with various nonlinear filters could lead to further improvements.

### 6.3 Deep Learning Filter Prediction

As a next step, deep learning can be used to estimate filter parameters directly from the image instead of running PSO each time. By training a model on images and their optimized filters, the system could quickly suggest suitable settings for new images with far less computation. This would make the method

faster and more practical, especially for applications that require near real-time processing.

## 7. CONCLUSION

This study demonstrates that Particle Swarm Optimization provides significant improvements to standard mean filtering approaches for color images by making the filter adaptive to image and noise characteristics. By optimizing filter parameters for each RGB channel individually while maintaining fundamental properties of the mean filter, we achieved substantial improvements in both quantitative metrics and visual quality.

The key findings include:

- PSO optimized adaptive filters reduced NMSE by approximately 4 fold compared to standard mean filtering
- The adaptive approach maintains the simplicity and constraints of mean filtering while dramatically improving performance
- The effectiveness depends on image content and noise characteristics, making it suitable for image specific optimization
- Channel specific optimization proved beneficial, with PSO finding different optimal adaptive filters for each RGB channel
- The approach maintains computational practicality while delivering significant quality improvements
- Combining the adaptive filter with other filtering techniques shows potential for further enhancements
- Results showed that PSO exhibits more stable, faster, and more reliable convergence compared to other similar optimization algorithms.

Although our work focused on Gaussian noise and  $3 \times 3$  filters, the general approach of using evolutionary optimization to transform standard filters into adaptive filters shows considerable promise. The method could be valuable in applications where consistent image quality

improvements are needed and computational resources allow for optimization processing.

The results indicate opportunities for improvement in traditional image processing approaches through the application of modern optimization techniques. As computational resources become more accessible, such adaptive approaches may become increasingly practical for various applications

## ACKNOWLEDGMENT

The author would like to thank the Libyan Center for Engineering Research and Information Technology for their continuous support and for providing an inspiring research environment. Gratitude is also extended to the Department of Electrical and Electronics Engineering at Pamukkale University for providing scientific knowledge and guidance throughout this study.

## REFERENCES

- [1] Gonzalez RC, Woods RE. Digital Image Processing. 3rd ed. Upper Saddle River (NJ): Prentice Hall; 2008.
- [2] Lukac R, Smolka B, Martin K, Plataniotis KN, Venetsanopoulos AN. Vector filtering for color imaging. *IEEE Signal Process Mag.* 2005 Jan;22(1):74–86.
- [3] Plataniotis KN, Venetsanopoulos AN. Color Image Processing and Applications. Berlin (Germany): Springer-Verlag; 2000.
- [4] Kennedy J, Eberhart R. Particle swarm optimization. In: Proceedings of ICNN'95 – International Conference on Neural Networks; 1995; Perth, Australia. p. 1942–8. vol. 4.
- [5] Zhang Y, Wang S, Ji G. A comprehensive survey on particle swarm optimization algorithm and its applications. *Math Probl Eng.* 2015;2015:931256.
- [6] Smolka B. Soft switching filters for color image processing. In: Proceedings of EUROCON 2005; 2005; Belgrade, Serbia. p. 1244–7.
- [7] Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: From error visibility to structural similarity. *IEEE Trans Image Process.* 2004;13(4):600–12.
- [8] LeCun Y, Bengio Y, Hinton G. Deep learning. *Nature.* 2015;521(7553):436–44