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ABSTRACT

This study presents a novel comparative analysis employing Random Forest regression to quantify the
relative importance of key Quality of Service (QoS) parameters—packet loss, delay, and jitter—in
Multiprotocol Label Switching (MPLS) and Software-Defined Wide Area Network (SD-WAN)
architectures. Using empirical data collected from controlled simulations of multimedia traffic, the
feature importance scores reveal that packet loss overwhelmingly dominates as the critical factor
influencing network performance, with scores of 0.8620 in SD-WAN and 0.7259 in MPLS, indicating
an 18.76% increase in SD-WAN’s sensitivity to packet loss. Delay exhibits moderate relevance in
MPLS, with an importance score of 0.2205, but shows markedly reduced significance in SD-WAN at
0.1341 (a 39.21% decrease). At the same time, jitter demonstrates negligible influence across both
networks, with scores below 0.054. These findings confirm that SD-WAN’s dynamic path optimisation
effectively mitigates delay effects, whereas packet loss remains the principal constraint on performance.
This work constitutes the first methodical Random Forest-based comparative evaluation of QoS
parameter importance across MPLS and SD-WAN, delivering robust, data-driven insights tailored to
each architecture’s operational characteristics. The framework provides network operators with critical
guidance for targeted QoS optimisation, prioritising packet loss mitigation strategies, particularly within
SD-WAN environments. Overall, this research establishes an empirical foundation for architecture-
specific QoS management, advancing intelligent network performance assessment through machine
learning techniques.

Keywords: feature importance, Quality of Service, network performance, MPLS, SD-WAN, Random Forest,
multimedia traffic.
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1. Introduction

The proliferation of bandwidth-intensive
multimedia  applications—including  high-
definition video conferencing, Voice over
Internet Protocol (VoIP), and immersive
streaming services—has fundamentally
transformed network performance requirements
[1, 2]. Unlike traditional data applications,
which tolerate transmission variability, real-
time multimedia services impose stringent,
multidimensional constraints on network
infrastructures. These temporal demands focus
primarily on three key Quality of Service (QoS)
parameters: end-to-end delay, inter-packet jitter
variation, and packet loss ratio.

Modern enterprise networks have evolved along
distinct  architectural  trajectories,  with
established Multiprotocol Label Switching
(MPLS) technology coexisting alongside
increasingly sophisticated Software-Defined
Wide Area Network (SD-WAN) solutions.
MPLS ensures deterministic performance
through constraint-based traffic engineering
mechanisms, while SD-WAN offers
programmable, adaptive path selection via
centralised control plane architectures [3, 4].
Despite the extensive deployment of both
technologies and substantial research into their
operational characteristics, a critical question
remains empirically unexplored: which (QoS)
parameters exert the most significant influence
on perceived network performance within each

architectural paradigm, and do these priorities
differ systematically between MPLS and SD-
WAN environments?

Traditional QoS assessment methodologies
have predominantly relied on uniform
parameter weighting, treating jitter, delay, and
packet loss as equally important and
independent factors. Although this assumption
is mathematically convenient, it lacks empirical
validation and may lead to suboptimal resource
allocation  strategies. The fundamental
limitation of conventional approaches lies in
their inability to quantify the varying
importance of QoS parameters across different
network architectures—a shortcoming that
becomes  increasingly = problematic  as
organisations undergo technological transitions
and deploy multiple architectures.

The convergence of machine learning and
network  performance analysis  presents
unprecedented opportunities to address this
limitation through data-driven empirical
investigation. Recent advances in machine
learning-driven QoS optimisation  have
demonstrated remarkable capabilities in
capturing complex network dynamics. Gantassi
et al. (2025) demonstrated that machine learning
algorithms are crucial in wireless sensor
networks for selecting cluster heads based on
various QoS metrics, significantly improving
energy efficiency and network performance [5].
Alenazi (2025) developed a deep reinforcement
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learning-based framework for flow-aware QoS
provisioning in  SD-IoT  environments,
achieving substantial improvements in delay,
throughput, packet loss rate, and jitter compared
with benchmark models. Furthermore, Osman
et al [6]. [7, 8] proposed a novel network
optimisation framework integrating software-
defined networking with deep learning
approaches to address the limitations of
traditional static QoS mechanisms in adapting
to dynamic network demands.

While recent investigations have successfully
applied machine learning to QoS optimisation
and prediction tasks, they have not
systematically addressed the comparative
quantification of parameter importance across
different network architectures. Random Forest
algorithms, in particular, offer interpretable
measures of feature importance through the
aggregation of ensemble decision trees,
enabling the identification of complex, non-
linear relationships that conventional statistical
methods often obscure [9, 10]. However,
despite the widespread application of Random
Forest methodologies in network traffic
classification and anomaly detection, their
utility in comparative feature importance
analysis for architectural QoS assessment
remains underexploited.

This paper addresses a critical research gap by
proposing a Random Forest-driven framework
for systematically evaluating the importance of
QoS parameters across contrasting network
architectures. To the best of our knowledge, this
study represents the first systematic application
of Random Forest-based feature importance
assessment to comparative QoS analysis in
MPLS and SD-WAN environments. By
applying Random Forest regression to
empirically gathered performance data from
controlled simulation environments, the
research quantifies the differential influence of
jitter, delay, and packet loss within MPLS and
SD-WAN contexts. The empirical findings
challenge conventional assumptions of uniform
parameter weighting and provide architecture-

specific insights that facilitate evidence-based
optimisation and resource allocation decisions.
The principal contributions of this research are
threefold: (1) the first application of the
Random Forest feature importance
methodology to a comparative MPLS-SD-
WAN QoS analysis, establishing a replicable
framework for architecture-specific parameter
assessment; (2) empirical quantification
demonstrating that the importance of packet
loss increases by 18.76% in SD-WAN
compared to MPLS, while the importance of
delay decreases by 39.21% and that of jitter
diminishes by  92.76%, fundamentally
challenging  traditional QoS  weighting
assumptions; and (3) a demonstration that
modern buffering and adaptive routing
mechanisms have systematically altered the
relative significance of traditional QoS metrics,
with profound implications for network design
and operational strategies.

2. Related Work
2.1 Quality of Service in Multimedia Networks

Foundational research by Shenker [11]
established the theoretical framework for multi-
dimensional Quality of Service (QoS)
requirements in packet-switched networks,
identifying delay, jitter, and packet loss as
fundamental performance parameters.
Subsequent empirical investigations confirmed
the differential sensitivity of multimedia
applications to these metrics, with voice
applications demonstrating extreme sensitivity
to jitter, whilst video streaming exhibits greater
tolerance for occasional packet loss [12, 13].

Chen and Nahrstedt [14] provided a
comprehensive analysis of QoS-based routing
methodologies, demonstrating that constraint-
based path selection could substantially
mitigate  performance  degradation  in
multimedia traffic scenarios. Their work
established the theoretical foundation for MPLS
traffic ~ engineering  approaches, = which
subsequently became the industry standard.
Similarly, Xiao and Ni [15] advanced the
understanding of per-hop behaviour (PHB)
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mechanisms within Differentiated Services
frameworks, illustrating how relationships
between QoS parameters could be modelled
through traffic conditioning policies.

More recent research has recognised the
growing inadequacy of traditional QoS metrics
in capturing complex performance dynamics.
Fiedler et al. [16] demonstrated only a partial
correlation between objective QoS indicators
and subjective user satisfaction, suggesting that
the importance of parameters varies depending
on the user's perception and the application
context. This finding fundamentally challenges
the assumption that equal weighting of QoS
parameters  yields optimal performance
assessments.

2.2 MPLS and SD-WAN Performance
Characteristics

MPLS-based QoS provision has been
extensively investigated in constraint-based
traffic engineering literature. Alsharif and
Shahsavari [17] conducted a comparative
analysis demonstrating MPLS superiority over
traditional IP routing in managing delay and
jitter, achieving  approximately  20%
performance improvements through optimised
label-switched path (LSP) placement. However,
their research did not systematically quantify
the relative importance of individual QoS
parameters within MPLS architectures.

SD-WAN technology has emerged as a
transformative paradigm, offering adaptive,
application-aware traffic management [8, 18].
Troia et al. [19] demonstrated superior SD-
WAN performance in mitigating packet loss
through dynamic path selection mechanisms,
whilst Moser [20] showed significant
advantages in failure recovery timescales.
Gonzalez et al. [21] examined SD-WAN
performance under cloud-native multimedia
workloads,  identifying  application-aware
routing as a critical determinant. Tahenni and
Merazka [22] conducted a comprehensive
controlled comparison of SD-WAN and MPLS,
revealing marginal performance advantages for

SD-WAN  across multiple  dimensions.
However, these studies emphasised aggregate
performance metrics without analysing the
relative contribution of individual QoS
parameters to overall network quality, and
notably did not employ systematic
quantification of feature importance but rather
qualitative  assessments  of  parameter
contributions. Furthermore, their analyses
assigned uniform significance to all QoS
parameters, lacking empirical validation of this
assumption.

2.3 Machine Learning Applications in
Network Performance Analysis

The application of machine learning to network
performance  analysis  has  accelerated
significantly in recent years. Ahmed et al. [1]
pioneered machine learning approaches to
network anomaly detection, establishing
foundational methodologies for algorithmic
network intelligence. Boutaba et al. [23]
provided a comprehensive survey of machine
learning in networking contexts, documenting
substantial progress in traffic classification, link
quality prediction, and congestion forecasting.

Feature importance analysis, as a distinct sub-
discipline, has received limited direct attention
within the network performance literature.
Random Forest methodologies have been
successfully applied to wvarious network
optimisation  problems [24];  however,
systematic investigation of QoS parameter
importance remains insufficiently explored.
Kulin et al. [25] documented machine learning
applications across multiple network layers but
did not specifically address the comparative
feature importance across different network
architectures. Zhang et al. [26] demonstrated
that machine learning approaches can achieve
greater accuracy in predicting Quality of
Experience (QoE) than conventional objective
metrics, suggesting that algorithmic methods
capture essential relationships obscured by
traditional statistical techniques. However, their
study focused on prediction accuracy rather
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than the explicit quantification of feature
importance.

2.4 Research Gap

Despite extensive literature on the performance
characteristics of MPLS and SD-WAN, and the
growing adoption of machine learning in
networking, a critical research gap remains:
there is no systematic, comparative analysis of
QoS parameter importance across different
network architectures in the academic literature.
Existing studies often treat jitter, delay, and
packet loss as equally significant factors,
without empirically validating this assumption
using feature importance methodologies. This
gap constitutes a significant limitation to the
development of evidence-based network
optimisation strategies and informed resource
allocation decisions. The present study
addresses this gap by applying Random Forest-
based feature importance assessment to
comparative QoS analysis across MPLS and
SD-WAN environments, providing the first
systematic  quantification of differential
parameter influence in contrasting network
architectures.

3. Methodology
3.1 Experimental Design and Network
Simulation

This investigation employed a simulation-based
methodology using GNS3 (Graphical Network
Simulator-3) version 2.2.53 integrated with
VMware Workstation 17 Player virtualisation
infrastructure. This approach enabled controlled
experimental environments whilst maintaining
fidelity to real-world network characteristics.
The simulation environment was executed on a
host system running VMware Workstation 17
Player, which provided the virtualisation layer
necessary for router emulation and network
topology implementation.

Two distinct network topologies were
implemented: one replicating an MPLS
provider edge/core/customer edge (PE/P/CE)

architecture with explicit label-switched path
(LSP) engineering, and a second implementing
SD-WAN overlay networking with centralised
control plane orchestration via Open vSwitch.
The simulation framework facilitated precise
control over network parameters, traffic
generation, and performance metric collection,
ensuring experimental reproducibility and
systematic comparison between architectural
paradigms.

3.1.1 MPLS Network Configuration

The MPLS topology employed Cisco 3725
routers running [OS version 15.T14, configured
with Provider Edge (PE) routers (R4, R6)
serving as ingress and egress points, Provider
(P) routers (R1, R2, R3) performing high-speed
label switching operations, and Customer Edge
(CE) routers connecting customer networks.
OSPF (Open Shortest Path First) functioned as
the underlying Interior Gateway Protocol, with
LDP (Label Distribution Protocol) facilitating
the establishment of LSPs. Virtual Routing and
Forwarding (VRF) instances provided logical
traffic separation. Traffic generation utilised
IPTerm endpoints running iperf3 with User
Datagram Protocol (UDP) transmission. Figure
1 illustrates the MPLS core network topology
used in the simulation, detailing router
configurations, OSPF areas, and
interconnecting links that form the basis for the
QoS analysis conducted.
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Fig 1. MPLS Network Topology.
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3.1.2 SD-WAN Network Configuration

The SD-WAN topology integrated Cisco 3725
routers functioning as edge devices, with Open
vSwitch providing centralised software-defined
control. GRE (Generic Routing Encapsulation),
combined with IPsec encryption, established
secure overlay tunnels. Dynamic routing,
utilising the Border Gateway Protocol (BGP)
alongside policy-based routing algorithms,
enabled real-time path selection based on
Identical traffic
generation endpoints and protocols were
employed to ensure experimental consistency.
Figure 2 presents the SD-WAN experimental

performance  metrics.

topology, illustrating the interconnection
between the client and server branches via the
Open vSwitch management network, along with
the addressing scheme and device configuration

used in the simulation.
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Fig 2. SD-WAN Network Topology.

3.2 Traffic Generation and QoS Metric
Collection

Multimedia traffic scenarios included Voice
over Internet Protocol (VolP) applications
operating at 32—128 Kbps and video streaming
ranging from 256 Kbps to 5 Mbps, representing
typical  enterprise multimedia  workload
profiles. All testing sessions were conducted
over 900-second intervals to ensure statistical
validity. Iperf3 collected real-time performance
metrics, including delay (milliseconds), jitter

(milliseconds), and packet loss (percentage),
whilst Wireshark packet capture provided
supplementary timestamp-based verification.
Performance data were systematically logged
and exported to CSV format for subsequent
analytical processing.

3.3 Data Pre-processing and Normalisation

Raw simulation data underwent comprehensive
pre-processing, including: (1) standardisation of
bitrate measurements to megabits per second
(Mbps); (2) identification and capping of
anomalous observations exceeding established
thresholds (delay > 500 ms, jitter > 100 ms,
packet loss > 10%); and (3) min-max
normalisation to the [0,1] range for dimensional
consistency. These procedures preserved the
underlying performance characteristics whilst
ensuring algorithmic stability and
interpretability. The pre-processed dataset was
consolidated into a unified CSV file containing
network type identifiers, QoS parameters (jitter,
delay, packet loss), and computed QoS scores
for both MPLS and SD-WAN architectures.

3.4 Feature Importance Analysis Methodology
Random Forest regression served as the primary
analytical technique for quantifying the
importance of QoS parameters. The algorithm
constructs an ensemble of decision trees by
utilising bootstrap-aggregated training samples,
with random subsets of features selected at each
node split to maximise diversity and reduce
correlation between trees [9]. Feature
importance is calculated from the cumulative
reduction in impurity across the entire
ensemble, producing interpretable percentage-
based contributions that quantify each variable's
relative influence on network performance
prediction [10].

3.4.1 Implementation Environment and
Software Configuration

The feature importance analysis was
implemented in Python 3.x using the scikit-
learn library (version 1.0+), which provides
optimised implementations of ensemble
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learning algorithms. The analytical pipeline

utilised the following core libraries:

e scikit-learn: RandomForestRegressor
implementation for feature importance
quantification

e pandas: Data manipulation and CSV file
handling

¢ numpy: Numerical computations and array
operations

e matplotlib and seaborn: Statistical
visualisation and  graphical  output
generation

The complete analytical workflow was executed

within a Visual Studio Code environment

version 1.104.2, facilitating  iterative
experimentation and result validation.

3.4.2 Random Forest Hyperparameter

Configuration

Separate Random Forest regressors were

trained independently on the MPLS and SD-

WAN datasets using standardised

hyperparameters to  ensure  analytical

consistency and architectural comparability.

The  hyperparameter configuration was

specified as follows:

e n_estimators = 100: The ensemble
comprised 100 decision trees, balancing
computational efficiency with predictive
stability. This value represents a commonly
adopted configuration in Random Forest
literature, providing sufficient ensemble
diversity ~ whilst avoiding excessive
computational overhead.

e random_state = 42: A fixed random seed
value of 42 was employed across all
Random Forest instantiations to ensure
deterministic behaviour and
reproducibility. This seed controlled the
random number generation for bootstrap
sampling and feature selection at each tree
node, guaranteeing that repeated executions
of the analytical pipeline yield identical
results.

o Default scikit-learn parameters: All
remaining hyperparameters retained their
default scikit-learn values, including:

o max _depth = None (nodes
expanded until all leaves are pure or
contain fewer than min_samples_split
samples)

o min samples split = 2
(minimum samples required to split an
internal node)

o min samples leaf = 1
(minimum samples required at a leaf
node)

o criterion =
'squared error' (mean squared
error impurity measure)

o max features = 'auto'
(\n_features considered for best split
at each node)

This hyperparameter configuration facilitated
meaningful architectural comparisons by
eliminating parameter-induced variability as a
confounding factor, ensuring that observed
differences in feature importance reflected
genuine architectural characteristics rather than
algorithmic artefacts.

3.4.3 Feature Importance Computation

For each network architecture, the Random
Forest regressor was trained on the respective
dataset, with QoS parameters (jitter, delay,
packet loss) serving as input features (X) and
the computed QoS score serving as the target
variable (y). The model fitting process
employed the standard scikit-learn fit ()
method, which internally executes bootstrap
aggregation and constructs the ensemble of
decision trees.

Feature importance values were extracted using
the feature importances  attribute,
which returns normalised importance scores
summing to unity. These scores quantify the
cumulative reduction in prediction error (mean
squared error) attributable to each feature across
all trees in the ensemble, weighted by the
proportion of samples reaching each node.
Higher importance values indicate greater
predictive influence on the target variable (QoS
score).
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3.5 Comparative Analysis Framework

The architectural comparison employed
standardised methodological procedures for
both MPLS and SD-WAN datasets, facilitating
rigorous evaluation of differential patterns in
parameter importance. Feature importance
scores were compiled into a structured
DataFrame for systematic comparison, with
columns representing feature names, MPLS
importance values, SD-WAN importance
values, and percentage change metrics.

The quantification of relative importance shifts
utilised percentage change calculations,
specifically:

Percentage Change = [(SD-WAN Importance —
MPLS Importance) / MPLS Importance] x 100
This metric enabled direct assessment of
architectural effects on parameter significance,
identifying which QoS parameters exhibit
increased or decreased importance in SD-WAN
relative to MPLS. Positive percentage changes
indicate a heightened importance in SD-WAN,
while negative values signify a diminished
importance.

4. Results and Discussion

Table 1. Descriptive Statistics for QoS Metrics
Across Network Architectures.
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4.1 Descriptive Statistical Characteristics of
Collected Data

Before conducting advanced feature importance
analysis, a comprehensive descriptive statistical
examination of the collected network
performance data was undertaken to establish
baseline characteristics and identify inherent
patterns within the dataset. This preliminary
analysis encompasses measurements from both
MPLS and SD-WAN architectures across
diverse multimedia traffic scenarios, including
VoIP applications operating at bitrates ranging
from 32 to 128 Kbps and video streaming
services spanning 256 Kbps to 5 Mbps.

Table 1 presents the descriptive statistics for the
three principal QoS parameters—jitter, delay,
and packet loss—aggregated across all
experimental scenarios for both network
architectures. The statistical summary includes
measures of central tendency (mean, median),
dispersion (standard deviation), and range
(minimum, maximum values), providing a
foundational  understanding of network
behaviour under varied operational conditions.

The descriptive analysis reveals several notable
patterns. SD-WAN demonstrates substantially
lower mean jitter (3.213 ms) compared with
MPLS (7.636 ms), representing an approximate
58% reduction. This difference is accompanied
by reduced variability, as evidenced by the
lower standard deviation in SD-WAN (1.575
ms) compared to MPLS (4.795 ms). The
maximum jitter values, whilst comparable
between architectures, suggest that both
systems encounter similar peak stress
conditions, yet SD-WAN maintains superior
baseline performance.

Delay characteristics present a more nuanced
picture. Although MPLS exhibits a slightly
lower mean delay (46.808 ms versus 52.014
ms), the median values are relatively
comparable, indicating that occasional outliers
influence  the  distribution of delay
measurements. Both architectures demonstrate
substantial variability in delay, with standard
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deviations exceeding 33 ms, reflecting the
dynamic nature of network conditions under
diverse traffic loads.

Packet loss statistics reveal remarkably similar
behaviour between the two architectures, with
mean values of approximately 18% for both
MPLS and SD-WAN. The zero median values
indicate that the majority of measurements
experienced no packet loss, whilst the
maximum values exceeding 80% demonstrate
that both networks are susceptible to severe
degradation under extreme congestion
scenarios. This bimodal distribution suggests
that packet loss events, when they occur, tend to
be substantial rather than incremental.

Figure 3 presents box plot distributions for the
three QoS parameters, visually illustrating the
spread and concentration of measurements
across the two network architectures. The box
plots clearly demonstrate SD-WAN's tighter
jitter distribution and comparable delay
performance, whilst highlighting the similarity
in packet loss Dbehaviour between the
architectures.
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Fig 3. Comparative Box Plot Distributions of QoS
Metrics (Jitter, Delay, Packet Loss) Across MPLS

and SD-WAN Architectures.

These descriptive statistics provide essential
context for the subsequent feature importance
analysis. The observed differences in jitter
performance, combined with the similar packet
loss characteristics, suggest that the relative
importance of these parameters may differ
substantially between MPLS and SD-WAN
architectures. The high variability in all metrics
underscores the necessity for sophisticated
analytical techniques, such as Random Forest
regression, to disentangle the complex
relationships between QoS parameters and
overall network performance.

Furthermore, the presence of zero minimum
values for delay and packet loss, contrasted with
substantial maximum values, indicates that both
networks  exhibit periods of optimal
performance interspersed with episodes of
significant ~ degradation. = This  temporal
variability reinforces the importance of
considering not merely average performance
but also the distribution and extremes of QoS
metrics when evaluating network architectures
for multimedia applications.

4.2 Feature Importance Quantification

Building upon the descriptive foundation
established in the previous section, Random
Forest analysis revealed markedly different
importance patterns between MPLS and SD-
WAN architectures (Table 2). Packet loss
exhibited the greatest overall importance, with
significantly higher prominence in SD-WAN
(0.8620) compared to MPLS (0.7259)—
representing a critical 18.76% increase in
importance. This substantial quantitative gap
constitutes the most significant architectural
divergence observed in this investigation and
holds profound implications for network design
and resource allocation strategies.

The 18.76% escalation in packet loss
importance within SD-WAN environments
suggests that SD-WAN's adaptive routing and
intelligent path selection mechanisms, whilst
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highly effective at mitigating delay and jitter,
but demonstrates reduced efficacy in addressing
packet loss. This architectural characteristic
reflects the fundamental constraint of software-
defined overlay networks operating across
heterogeneous and potentially unreliable
transport media. The magnitude of this
increase—nearly one-fifth higher than MPLS—
indicates that packet loss events exert
disproportionately severe impacts on SD-WAN
performance compared to traditional MPLS
deployments.

The substantial importance of packet loss in
both architectures, but particularly in SD-WAN,
aligns with the descriptive statistics presented
earlier, which demonstrated that whilst both
networks maintain zero packet loss under
optimal conditions, they are equally susceptible
to severe degradation episodes. The heightened
sensitivity of SD-WAN to packet loss, despite
its adaptive capabilities, suggests that loss
events—when they occur—have
disproportionate impacts on overall network
performance in software-defined architectures.

Delay exhibited moderate importance in MPLS
(0.2205) but showed substantially reduced
significance in SD-WAN (0.1341), representing
a39.21% decrease. This reduction indicates that
SD-WAN's dynamic path optimisation and
WAN acceleration technologies effectively
mitigate delay-induced performance
degradation, making this parameter
comparatively less critical for overall QoS
assessment.  The  descriptive  statistics
corroborate this finding, showing comparable
median delay values between architectures
despite different mean values, suggesting that
SD-WAN's intelligent routing successfully
maintains consistent delay performance under
varied conditions.

Jitter exhibited minimal importance in both
architectures, with contributions of 0.0536 for
MPLS and 0.0039 for SD-WAN, indicating
negligible operational significance. The
substantial  92.76%  reduction in jitter
importance for SD-WAN suggests that

advanced buffer management and error
correction mechanisms within software-defined
architectures significantly mitigate temporal
variance effects that continue to pose challenges
in traditional MPLS deployments. This finding
is particularly noteworthy, given that the
descriptive statistics demonstrate that SD-WAN
achieves substantially lower mean jitter (3.213
ms versus 7.636 ms). However, the feature
importance analysis reveals that this parameter
contributes minimally to overall network
performance differentiation in both
architectures.

Table 2. Random Forest Feature Importance Scores
for QoS Parameters Across MPLS and SD-WAN
Network Architectures.

%
MPLS sDwaN | Change
HE Importance | Importance (I
P P WAN vs.
MPLS)
Jitter 0.0536 0.0039 | -92.76 %
(ms)
Loss (%) | 0.7259 08620 | +18.76 %
Delay 0.2205 0.1341 | -39.21%
(ms)

Feature Importance Comparison (MPLS vs SD-WAN)

MPLS
SD WAN

Feature Impartance

Jitter (ms) Loss % Dalay (ms)

Fig 4. Random Forest Feature Importance
Comparison: Relative Significance of Jitter, Packet
Loss, and Delay in MPLS versus SD-WAN Network
Architectures.

Figure 4 compares the relative importance of
jitter, packet loss, and delay in MPLS and SD-
WAN, visually reinforcing the dominance of
packet loss as the primary determinant of
network performance in both architectures,
while highlighting the architectural differences
in the significance of delay and jitter. The
pronounced disparity in packet loss importance
(18.76% increase) is particularly evident,
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demonstrating SD-WAN's heightened
vulnerability to loss-induced performance

degradation.

4.3 Architectural Implications of Feature
Importance Distribution

The observed hierarchy of importance reveals
fundamental differences in how each network
architecture processes multimedia traffic,
differences that are illuminated by both the
descriptive statistics and the feature importance
analysis. MPLS demonstrates relatively
balanced sensitivity to delay (0.2205) and
packet loss (0.7259), indicating that both
parameters substantially influence perceived
quality. This distribution reflects MPLS's
reliance on pre-engineered label-switched paths
with static resource allocation mechanisms;
whilst these approaches effectively reserve
bandwidth and prevent congestion-induced
delay accumulation, they remain vulnerable to
link failures and transient packet loss events that
violate assumptions of reserved capacity.

The 18.76% increase in packet loss importance
observed in SD-WAN represents a fundamental
architectural trade-off: whilst SD-WAN's
dynamic path optimisation successfully reduces
delay significance by 39.21% through
intelligent routing across multiple transport
options, this very flexibility introduces greater
exposure to packet loss across heterogeneous
underlay networks. Software-based error
mechanisms,  despite  their
sophistication, cannot fully compensate for the
underlying transport unreliability inherent in
multi-path, best-effort connectivity models.

correction

The descriptive statistics revealed that MPLS
maintains slightly lower mean delay but
exhibits greater jitter variability, suggesting that
its traffic engineering mechanisms prioritise
delay management at the potential expense of
temporal consistency. The feature importance
analysis demonstrates, however, that jitter's
contribution to overall performance is minimal,

validating the architectural prioritisation of
delay and loss mitigation over jitter control.

SD-WAN's pronounced emphasis on packet
loss  (0.8620)  reflects the  inherent
characteristics of software-defined architectures
operating across heterogeneous transport
media. By dynamically steering traffic across
multiple underlay transport mechanisms
(broadband, MPLS, LTE/5G), SD-WAN
effectively minimises delay through path
optimisation and WAN acceleration, thereby
reducing the relative importance of this
parameter. The  descriptive  statistics
corroborated this, showing that whilst SD-
WAN's mean delay is marginally higher than
MPLS, its median delay is lower, suggesting
more consistent performance under typical
operating conditions.

Conversely, packet loss remains the
fundamental constraint limiting multimedia
quality in SD-WAN, as software-based error
correction mechanisms cannot fully compensate
for the underlying transport unreliability. The
similar packet loss distributions observed in the
descriptive statistics (mean values around 18%
for both architectures) indicate that both
systems face comparable challenges in
maintaining transmission integrity under stress,
yet the feature importance analysis reveals that
loss events have a greater impact on SD-WAN's
overall performance.

The minimal importance of jitter across both
architectures (MPLS: 0.0536; SD-WAN:
0.0039) warrants particular emphasis. This
finding contradicts conventional wisdom,
which emphasises jitter as a critical multimedia
QoS parameter. The substantial reduction in
jitter importance within SD-WAN (a 92.76%
decrease) suggests that modern adaptive
buffering algorithms and packet sequencing
mechanisms effectively mask temporal arrival
variations, rendering this parameter
considerably less significant than traditionally
assumed. The descriptive statistics supported
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this conclusion by demonstrating that SD-WAN
achieves substantially lower jitter (3.213 ms
versus 7.636 ms), yet this improvement
translates into minimal gains in overall network
performance due to the overwhelming influence
of packet loss.

In MPLS environments, dedicated bandwidth
allocation  similarly  provides sufficient
buffering capacity to contain jitter effects within
acceptable multimedia parameters. The
descriptive analysis showed that whilst MPLS
exhibits higher mean and maximum jitter
values, these variations do not translate into
proportional performance degradation, as
evidenced by jitter's low importance score.

4.4 Operational Implications for Network
Management

The feature importance analysis, contextualised
by the descriptive statistical characteristics of
the collected data, yields several significant
implications for network operational strategies.
The critical 18.76% increase in packet loss
importance within SD-WAN environments
necessitates fundamental reconsideration of
QoS management priorities.

4.4.1 Prioritised Packet Loss Mitigation in SD-
WAN

Given the overwhelming importance of packet
loss (0.8620) and the 18.76% escalation relative
to MPLS, SD-WAN operators should prioritise
aggressive loss mitigation strategies as the
primary QoS optimisation objective. The
descriptive evidence showing comparable loss
susceptibility between architectures, combined
with the heightened importance of SD-WAN,
suggests that packet loss represents the most
critical performance bottleneck in software-
defined wide area networks.

The bimodal distribution of packet loss—
characterised by frequent zero-loss periods
punctuated by severe degradation episodes—
suggests that preventive measures are more

effective than reactive responses. Techniques
such as forward error correction (FEC), packet
duplication for critical flows, and intelligent
link probing to detect suboptimal paths
represent high-impact optimisation targets.
Resource allocation decisions should prioritise
loss reduction over other performance
parameters, particularly given that SD-WAN's
adaptive mechanisms already effectively
manage delay and jitter.

Practical recommendations include:

— Implementing aggressive FEC schemes
with coding rates tailored to observed loss
patterns.

— Deploying packet duplication for latency-
sensitive applications during periods of
detected transport instability.

— Configuring SD-WAN controllers to
weight packet loss more heavily than delay
or jitter in path selection algorithms.

— Establishing  stricter  Service  Level
Agreements (SLAs) focused on packet loss
thresholds rather than traditional delay-
centric metrics.

4.4.2 Balanced Optimisation Strategy for
MPLS

MPLS operators must adopt more balanced
optimisation strategies that address both packet
loss (0.7259) and delay (0.2205) with
comparable emphasis. The descriptive statistics
revealed that MPLS maintains a lower mean
delay but with substantial variability,
suggesting that traffic engineering mechanisms
should simultaneously optimise path selection
to minimise loss and delay, recognising that
neglecting either parameter would compromise
overall QoS delivery. The relatively higher
importance of delay in MPLS compared to SD-
WAN indicates that investments in delay-
reducing technologies—such as optimised LSP
placement and queuing discipline refinement—
yield proportionally greater performance
improvements in MPLS environments.
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4.4.3 Deprioritisation of Jitter Management

The findings regarding the minimal importance
of jitter, combined with the descriptive evidence
showing that SD-WAN achieves substantially
lower jitter yet minimal performance gains,
suggest that substantial investment in
sophisticated jitter buffering and temporal
smoothing mechanisms may offer limited
practical benefit. Network operators might
consider reallocating resources traditionally
dedicated to jitter control towards packet loss
and delay optimisation, potentially enhancing
the overall efficiency of Quality of Service
(QoS) delivery. This recommendation is
particularly relevant for SD-WAN
deployments, where jitter contributes less than
0.4% to overall performance determination.

4.5 Validation and Cross-Verification

Random Forest feature importance calculations
were validated using supplementary analytical
methods. Mean Decrease in Impurity (MDI)
calculations confirmed consistency with the
observed importance distributions. Out-of-bag
(OOB) error estimates provided internal
validation of generalisability, indicating that the
observed feature importance reflected genuine
architectural characteristics rather than dataset-
specific artefacts.

Cross-validation procedures assessed the
stability of feature importance across data
subsets, revealing robust rankings with minimal
variation between training samples. This
consistency reinforces confidence in the
architectural conclusions drawn from the
quantification of feature importance. The
alignment between the descriptive statistical
patterns and the feature importance results
further wvalidates the analytical approach,
demonstrating that the Random Forest
methodology  successfully  captured the
underlying  relationships  between QoS
parameters and network performance.

4.6 Comparison with Existing Literature

The pronounced importance of packet loss
observed herein aligns with contemporary
research emphasising loss as a critical
determinant of Quality of Service (QoS).
Ouamri et al. [27] similarly identified packet
loss as the paramount QoS factor in SD-WAN
contexts, providing independent corroboration
of the findings presented here. However, the
substantial differential—an 18.76% increase in
the importance of packet loss within SD-WAN
relative to MPLS—represents novel empirical
insight not previously documented in the
academic literature. This quantitative gap
establishes a new benchmark for understanding
architectural trade-offs in software-defined
networking and provides empirical validation
for prioritising packet loss mitigation in SD-
WAN deployments.

The minimal importance of jitter contradicts
traditional Quality of Service (QoS) literature,
which is based on equivalently weighted
parameter formulations [13, 28]. This
discrepancy likely reflects technological
advancements in adaptive buffering and the
resilience of multimedia codecs since the
foundational QoS studies were conducted. The
descriptive statistics provided in this study offer
quantitative evidence supporting this evolution,
demonstrating that modern networks—
particularly SD-WAN-—maintain low jitter
levels yet derive minimal performance benefit
from these improvements. Modern applications
employ sophisticated error concealment
algorithms that tolerate temporal variance far
better than legacy systems assumed.

The moderate importance of delay for SD-
WAN (0.1341) diverges from expectations
based on distance-based path optimisation
theory. This finding suggests that, although SD-
WAN successfully minimises delay through
intelligent routing—as evidenced by the
comparable median delay values in the
descriptive statistics—residual delay effects
contribute only modestly to overall QoS
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degradation once packet loss is controlled. This
observation supports the hypothesis that SD-
WAN path selection optimisation is highly
effective, rendering delay increasingly
inconsequential relative to the remaining loss-
induced degradation.

4.7 Limitations and Considerations

This analysis presents several methodological
limitations that warrant acknowledgement.
Although simulation-based experimentation
allows for controlled manipulation of
parameters, it may not fully capture the
complexity of operational networks. The
descriptive  statistics revealed substantial
variability in all measured parameters,
suggesting that real-world deployments may
encounter ~ even  greater  performance
fluctuations due to factors such as dynamic
traffic patterns, diverse application behaviours,
and unpredictable network events.

Feature  importance  analysis  identifies
correlations within historical data; however, it
does not establish causal relationships, and
unmeasured confounding variables may
influence the observed importance
distributions. The normalised QoS calculation
employed uniform weighting across the training
data. Scenarios dominated by pronounced
packet loss—as evidenced by the maximum
values exceeding 80% in the descriptive
statistics—may bias the importance
quantification  towards this  parameter,
potentially overestimating its relative influence.
However, the consistency of results across
multiple Random Forest instantiations with
varying hyperparameters, combined with the
alignment between descriptive patterns and
feature = importance  outcomes,  suggests
robustness against this potential bias.

5. Conclusion

This  investigation presents the  first

comprehensive,  machine  learning-based

comparative analysis of the importance of QoS

parameters  across  contrasting  network
architectures, grounded in rigorous descriptive
statistical ~characterisation of empirically
collected data. Quantification of feature
importance using Random Forest reveals
substantial architectural differences in the
influence of jitter, delay, and packet loss on
multimedia traffic performance. Principal

findings establish:

1. Packet loss dominance with critical
architectural divergence: Both architectures
exhibit pronounced sensitivity to packet
loss, with SD-WAN demonstrating
significantly greater importance (0.8620)
compared to MPLS (0.7259)—a critical
18.76% increase that represents the most
substantial architectural difference
observed in this study. The descriptive
statistics demonstrated that whilst both
networks maintain zero packet loss under
optimal conditions, they are equally
susceptible to severe degradation episodes
exceeding 80% loss. This finding mandates
that  infrastructure  investment and
operational focus prioritise loss mitigation
over other optimisation objectives,
particularly within SD-WAN environments
where packet loss exerts disproportionately
severe impacts on overall network
performance.

2. Architecture-specific delay sensitivity:
Whilst delay moderately affects MPLS
performance (0.2205), SD-WAN's
advanced path optimisation renders delay
considerably less significant (0.1341)—a
39.21% reduction. The descriptive analysis
revealed that SD-WAN  achieves
comparable median delay despite slightly
higher mean values, confirming that
intelligent routing successfully maintains
consistent latency performance. This
difference reflects fundamental
technological distinctions in how each
architecture manages latency.

3. Minimal jitter significance: The importance
of jitter approaches negligibility in both
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architectures, particularly within SD-WAN
(0.0039). Despite SD-WAN demonstrating
substantially lower mean jitter (3.213 ms
7.636 ms for MPLS) in the
descriptive statistics, this improvement

VErsus

contributes minimally to overall network
performance. These findings challenge
traditional QoS formulations predicated on
equal parameter weighting and suggest
opportunities for resource reallocation by
network operators.

Practical QoS Policy Recommendations:

The empirical findings of this investigation

translate

directly into actionable QoS

management policies for network operators:

For SD-WAN Deployments:

1.

Packet Loss-Centric Policies: Implement
QoS policies that prioritise packet loss
mitigation as the primary performance
objective. Configure SD-WAN controllers
to weight packet loss metrics at least 20%
higher than delay and jitter metrics in path
selection algorithms, reflecting the 18.76%
importance increase quantified herein.
Proactive Loss Prevention: Deploy forward
error correction (FEC) mechanisms with
adaptive coding rates based on real-time
loss observations. Implement packet
duplication for critical multimedia flows
during periods of detected transport
instability.

SLA Restructuring: Revise Service Level
Agreements to emphasise packet loss
thresholds (e.g., <0.1% for premium
services) rather than traditional delay-
centric metrics. Allocate performance
monitoring resources proportionally to the
demonstrated importance hierarchy: 86% to
packet loss, 13% to delay, and 1% to jitter.
Resource Reallocation: Redirect resources
traditionally allocated to jitter management
(buffering, temporal smoothing) towards

packet loss mitigation technologies, given

jitter's negligible impact (0.4%

contribution) on overall performance.

For MPLS Environments:

1.

Balanced Dual-Objective Policies:
Implement traffic engineering policies that
simultaneously optimise packet loss and
delay with comparable priority, reflecting
their respective importance scores (0.7259
and 0.2205).

LSP Optimisation: Prioritise label-switched
path placement algorithms that minimise
both loss probability and end-to-end delay.
Configure queuing disciplines to balance
these dual objectives rather than optimising
for single metrics.

Monitoring Frameworks: Deploy
monitoring systems that track both packet
loss and delay with equal granularity,
enabling operators to identify degradation

in either parameter promptly.

Universal Recommendations:

1.

Jitter Deprioritisation: Reduce investment
in  sophisticated  jitter = management
technologies, given the empirically
demonstrated minimal impact on network
performance. Simple buffering mechanisms
are sufficient for both architectures.
Recognise
that optimal QoS policies are architecture-
specific rather than universal. Avoid
applying MPLS-derived QoS strategies
directly to SD-WAN environments without
accounting for the 18.76% difference in
packet loss importance.

Dynamic Policy Adaptation: Implement
machine learning-driven policy engines that

Architecture-Aware Policies:

continuously parameter
importance based on real-time traffic

r€assess

patterns, enabling adaptive QoS
management that responds to evolving
network conditions.
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— Evidence-Based Framework and Future
Research Directions

The integration of descriptive statistical
analysis with advanced feature importance
quantification provides a robust, evidence-
based framework for understanding network
behaviour. The descriptive statistics illuminated
the baseline performance characteristics and
inherent variability of each architecture, whilst
the Random Forest analysis revealed which of
these characteristics truly drive overall network
quality. This dual-layered approach ensures that
conclusions are grounded in empirical
observation and validated through sophisticated
machine learning techniques.

These empirical insights offer evidence-based
foundations for architecture-specific
optimisation strategies, enabling network
operators to prioritise resource allocation
decisions based on demonstrated parameter
importance rather  than conventional
assumptions. The proposed Random Forest
methodology, combined with comprehensive
descriptive statistical characterisation,
demonstrates considerable utility for QoS
parameter analysis and establishes a replicable,
data-driven framework for future network
performance research.

Future investigations should extend this

framework along several critical dimensions:

1. Real-World Traffic Datasets: Validate these
simulation-derived findings using extensive
operational traffic datasets from production
enterprise networks. Real-world
deployments encompass greater
complexity, including diverse application
behaviours, dynamic traffic patterns, and
unpredictable  network  events  that
simulation environments cannot fully
replicate. Large-scale studies incorporating
months or years of operational data would
establish whether the observed 18.76%
packet loss importance differential persists
across varied deployment scenarios.

Emerging Network Architectures: Apply

the Random  Forest-based  feature

importance methodology to contemporary
and emerging architectures, including:

o Network Function Virtualisation
(NFV): Investigate whether virtualised
network functions exhibit similar
parameter importance hierarchies or
introduce novel trade-offs between
packet loss, delay, and jitter.

o Intent-Based Networking (IBN):
Assess how autonomous, policy-

driven networking paradigms
influence QoS parameter
relationships.

o 5G and Beyond Networks: Examine
feature importance in ultra-reliable
low-latency communication (URLLC)
and enhanced mobile broadband
(eMBB) scenarios.

o Hybrid  Architectures: Analyse
networks combining MPLS, SD-
WAN, and cloud-native connectivity
models to identify optimal QoS
strategies  for  multi-architecture
environments.

Diverse Application Profiles: Expand the
analysis beyond VoIP and video streaming
to encompass emerging applications such
as:

o Extended reality (XR) applications
requiring ultra-low latency and
consistent packet delivery

o Industrial IoT scenarios with mission-
critical reliability requirements

o Cloud gaming services with unique
latency and jitter sensitivities

o Collaborative  software-as-a-service
(SaaS) applications with variable
bandwidth demands

Longitudinal Studies: Conduct longitudinal
analyses tracking the evolution of
parameter  importance as  network
technologies mature, protocols advance,
and application requirements shift. Such
studies would elucidate whether the
observed importance hierarchies represent
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stable architectural characteristics or
transient phenomena subject to
technological evolution.

5. Causal Inference: Extend  beyond
correlational feature importance analysis to
establish causal relationships between QoS
parameters and network performance using
advanced econometric techniques or causal
machine learning methods. Understanding
causality would enable more precise
interventions and policy optimisations.

6. Economic Impact Analysis: Quantify the
financial implications of architecture-
specific QoS policies by modelling the costs
of various mitigation strategies (FEC
deployment, redundant path provisioning,

upgraded  transport  links)  against
performance improvements. Such
economic models would guide

organisations in making cost-effective QoS
investment decisions.

The integration of machine learning with
network performance analysis represents a
paradigm shift towards intelligent, evidence-
based infrastructure = management. By
quantifying parameter importance through
algorithmic analysis of large-scale empirical
data, contextualised by rigorous descriptive
statistical examination, organisations can move
beyond traditional, assumption-based
approaches and implement demonstrably
optimal performance optimisation strategies
that align with actual technological capabilities
and limitations. The 18.76% packet loss
importance differential quantified in this study
establishes a new empirical benchmark for SD-
WAN QoS management and provides a
foundation upon which future research can
build increasingly sophisticated, data-driven
network optimisation frameworks.
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