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ABSTRACT 

This study presents a novel comparative analysis employing Random Forest regression to quantify the 

relative importance of key Quality of Service (QoS) parameters—packet loss, delay, and jitter—in 
Multiprotocol Label Switching (MPLS) and Software-Defined Wide Area Network (SD-WAN) 

architectures. Using empirical data collected from controlled simulations of multimedia traffic, the 

feature importance scores reveal that packet loss overwhelmingly dominates as the critical factor 
influencing network performance, with scores of 0.8620 in SD-WAN and 0.7259 in MPLS, indicating 

an 18.76% increase in SD-WAN’s sensitivity to packet loss. Delay exhibits moderate relevance in 

MPLS, with an importance score of 0.2205, but shows markedly reduced significance in SD-WAN at 

0.1341 (a 39.21% decrease). At the same time, jitter demonstrates negligible influence across both 
networks, with scores below 0.054. These findings confirm that SD-WAN’s dynamic path optimisation 

effectively mitigates delay effects, whereas packet loss remains the principal constraint on performance. 

This work constitutes the first methodical Random Forest-based comparative evaluation of QoS 
parameter importance across MPLS and SD-WAN, delivering robust, data-driven insights tailored to 

each architecture’s operational characteristics. The framework provides network operators with critical 

guidance for targeted QoS optimisation, prioritising packet loss mitigation strategies, particularly within 
SD-WAN environments. Overall, this research establishes an empirical foundation for architecture-

specific QoS management, advancing intelligent network performance assessment through machine 

learning techniques. 

Keywords: feature importance, Quality of Service, network performance, MPLS, SD-WAN, Random Forest, 

multimedia traffic.

لأهمية الميزات في جودة الخدمة في   Random Forestالتقييم المعتمد على 
 ( SD-WAN)وشبكات   (MPLSشبكات )

1، أبوعجيلة دوقمان 1تهاني القنصل

.الهندسة والعلوم التطبيقية، الأكاديمية الليبية، الجبل الغربي، ليبيا مدرسة 1

ملخــــــــــــــــص البحــــــــــــــــــث 
ا باستخدام نماذج الانحدار بغابة عشوائية   لتحديد الأهمية النسبية    (Random Forest)تقدم هذه الدراسة تحليلًا مقارناا جديدا

في هندستَي شبكات تبديل التسمية    —فقدان الحزم، التأخير، والتذبذب الزمني    — الرئيسية    (QoS)لمعاملًت جودة الخدمة  
باستخدام بيانات تجريبية جُمعت من  (.  SD-WAN)والشبكات الواسعة المعرفة برمجياا    (MPLS) متعدد البروتوكولات  

محاكاة محكمة لحركة مرور الوسائط المتعددة، تُظهر نتائج تقييم أهمية السمات أن فقدان الحزم يهيمن بشكل كبير كعامل  
ما    ، MPLSفي    0.7259و  SD-WANفي شبكات    0.8620حاسم يؤثر على أداء الشبكة، حيث بلغ معدل الأهمية  
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إلى زيادة نسبتها   أما التأخير فأظهر أهمية متوسطة في    SD-WAN% في حساسية  18.76يشير  الحزم.  تجاه فقدان 
MPLS    ولكنه كان أقل كثيراا في  0.2205بمعدل أهمية ،SD-WAN    (.  39.21)بانخفاض نسبته    0.1341بمعدل%

. تؤكد هذه النتائج  0.054في الوقت نفسه، بين التذبذب الزمني تأثيراا ضئيلًا في كلً الشبكتين، بمعدلات أهمية تقل عن  
يخفف بفعالية آثار التأخير، بينما يظل فقدان الحزم القيد الأساسي للأداء.   SD-WANأن تحسين المسار الديناميكي في 

-SDو  MPLSيُعد هذا العمل التقييم المنهجي الأول باستخدام غابة عشوائية لمقارنة أهمية معاملًت جودة الخدمة عبر  

WAN،تتوافق مع خصائص كل هندسة تشغيلية. ويقدم الإطار الإرشادي لمشغلي مقدماا رؤى قوية مدفوعة بالبيانات 
الحزم،   فقدان  من  الحد  لاستراتيجيات  الأولوية  إعطاء  مع  المستهدف،  الخدمة  جودة  لتحسين  حاسمة  توجيهات  الشبكات 

ا في بيئات  ا بكل هندسة ليعززSD-WANخصوصا ا تجريبياا لإدارة جودة الخدمة خاصا . عموماا، يؤسس هذا البحث أساسا
 تقييم أداء الشبكات بذكاء عبر تقنيات التعلم الآلي. 

. ، الغابة العشوائية، حركة مرور الوسائط المتعددة MPLS ،SD-WANأهمية الميزة، جودة الخدمة، أداء الشبكة، الكلمات الدالة:  

 .

1. Introduction

The proliferation of bandwidth-intensive 

multimedia applications—including high-

definition video conferencing, Voice over 

Internet Protocol (VoIP), and immersive 

streaming services—has fundamentally 

transformed network performance requirements 

[1, 2]. Unlike traditional data applications, 

which tolerate transmission variability, real-

time multimedia services impose stringent, 

multidimensional constraints on network 

infrastructures. These temporal demands focus 

primarily on three key Quality of Service (QoS) 

parameters: end-to-end delay, inter-packet jitter 

variation, and packet loss ratio. 

Modern enterprise networks have evolved along 

distinct architectural trajectories, with 

established Multiprotocol Label Switching 

(MPLS) technology coexisting alongside 

increasingly sophisticated Software-Defined 

Wide Area Network (SD-WAN) solutions. 

MPLS ensures deterministic performance 

through constraint-based traffic engineering 

mechanisms, while SD-WAN offers 

programmable, adaptive path selection via 

centralised control plane architectures [3, 4]. 

Despite the extensive deployment of both 

technologies and substantial research into their 

operational characteristics, a critical question 

remains empirically unexplored: which (QoS) 

parameters exert the most significant influence 

on perceived network performance within each 

architectural paradigm, and do these priorities 

differ systematically between MPLS and SD-

WAN environments? 

Traditional QoS assessment methodologies 

have predominantly relied on uniform 

parameter weighting, treating jitter, delay, and 

packet loss as equally important and 

independent factors. Although this assumption 

is mathematically convenient, it lacks empirical 

validation and may lead to suboptimal resource 

allocation strategies. The fundamental 

limitation of conventional approaches lies in 

their inability to quantify the varying 

importance of QoS parameters across different 

network architectures—a shortcoming that 

becomes increasingly problematic as 

organisations undergo technological transitions 

and deploy multiple architectures. 

The convergence of machine learning and 

network performance analysis presents 

unprecedented opportunities to address this 

limitation through data-driven empirical 

investigation. Recent advances in machine 

learning-driven QoS optimisation have 

demonstrated remarkable capabilities in 

capturing complex network dynamics. Gantassi 

et al. (2025) demonstrated that machine learning 

algorithms are crucial in wireless sensor 

networks for selecting cluster heads based on 

various QoS metrics, significantly improving 

energy efficiency and network performance [5]. 

Alenazi (2025) developed a deep reinforcement 
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learning-based framework for flow-aware QoS 

provisioning in SD-IoT environments, 

achieving substantial improvements in delay, 

throughput, packet loss rate, and jitter compared 

with benchmark models. Furthermore, Osman 

et al [6]. [7, 8] proposed a novel network 

optimisation framework integrating software-

defined networking with deep learning 

approaches to address the limitations of 

traditional static QoS mechanisms in adapting 

to dynamic network demands. 

While recent investigations have successfully 

applied machine learning to QoS optimisation 

and prediction tasks, they have not 

systematically addressed the comparative 

quantification of parameter importance across 

different network architectures. Random Forest 

algorithms, in particular, offer interpretable 

measures of feature importance through the 

aggregation of ensemble decision trees, 

enabling the identification of complex, non-

linear relationships that conventional statistical 

methods often obscure [9, 10]. However, 

despite the widespread application of Random 

Forest methodologies in network traffic 

classification and anomaly detection, their 

utility in comparative feature importance 

analysis for architectural QoS assessment 

remains underexploited. 

This paper addresses a critical research gap by 

proposing a Random Forest-driven framework 

for systematically evaluating the importance of 

QoS parameters across contrasting network 

architectures. To the best of our knowledge, this 

study represents the first systematic application 

of Random Forest-based feature importance 

assessment to comparative QoS analysis in 

MPLS and SD-WAN environments. By 

applying Random Forest regression to 

empirically gathered performance data from 

controlled simulation environments, the 

research quantifies the differential influence of 

jitter, delay, and packet loss within MPLS and 

SD-WAN contexts. The empirical findings 

challenge conventional assumptions of uniform 

parameter weighting and provide architecture-

specific insights that facilitate evidence-based 

optimisation and resource allocation decisions. 

The principal contributions of this research are 

threefold: (1) the first application of the 

Random Forest feature importance 

methodology to a comparative MPLS-SD-

WAN QoS analysis, establishing a replicable 

framework for architecture-specific parameter 

assessment; (2) empirical quantification 

demonstrating that the importance of packet 

loss increases by 18.76% in SD-WAN 

compared to MPLS, while the importance of 

delay decreases by 39.21% and that of jitter 

diminishes by 92.76%, fundamentally 

challenging traditional QoS weighting 

assumptions; and (3) a demonstration that 

modern buffering and adaptive routing 

mechanisms have systematically altered the 

relative significance of traditional QoS metrics, 

with profound implications for network design 

and operational strategies. 

2. Related Work

2.1 Quality of Service in Multimedia Networks

Foundational research by Shenker [11] 

established the theoretical framework for multi-

dimensional Quality of Service (QoS) 

requirements in packet-switched networks, 

identifying delay, jitter, and packet loss as 

fundamental performance parameters. 

Subsequent empirical investigations confirmed 

the differential sensitivity of multimedia 

applications to these metrics, with voice 

applications demonstrating extreme sensitivity 

to jitter, whilst video streaming exhibits greater 

tolerance for occasional packet loss [12, 13]. 

Chen and Nahrstedt [14] provided a 

comprehensive analysis of QoS-based routing 

methodologies, demonstrating that constraint-

based path selection could substantially 

mitigate performance degradation in 

multimedia traffic scenarios. Their work 

established the theoretical foundation for MPLS 

traffic engineering approaches, which 

subsequently became the industry standard. 

Similarly, Xiao and Ni [15] advanced the 

understanding of per-hop behaviour (PHB) 
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mechanisms within Differentiated Services 

frameworks, illustrating how relationships 

between QoS parameters could be modelled 

through traffic conditioning policies. 

More recent research has recognised the 

growing inadequacy of traditional QoS metrics 

in capturing complex performance dynamics. 

Fiedler et al. [16] demonstrated only a partial 

correlation between objective QoS indicators 

and subjective user satisfaction, suggesting that 

the importance of parameters varies depending 

on the user's perception and the application 

context. This finding fundamentally challenges 

the assumption that equal weighting of QoS 

parameters yields optimal performance 

assessments. 

2.2 MPLS and SD-WAN Performance 

Characteristics 

MPLS-based QoS provision has been 

extensively investigated in constraint-based 

traffic engineering literature. Alsharif and 

Shahsavari [17] conducted a comparative 

analysis demonstrating MPLS superiority over 

traditional IP routing in managing delay and 

jitter, achieving approximately 20% 

performance improvements through optimised 

label-switched path (LSP) placement. However, 

their research did not systematically quantify 

the relative importance of individual QoS 

parameters within MPLS architectures. 

SD-WAN technology has emerged as a 

transformative paradigm, offering adaptive, 

application-aware traffic management [8, 18]. 

Troia et al. [19] demonstrated superior SD-

WAN performance in mitigating packet loss 

through dynamic path selection mechanisms, 

whilst Moser [20] showed significant 

advantages in failure recovery timescales. 

González et al. [21] examined SD-WAN 

performance under cloud-native multimedia 

workloads, identifying application-aware 

routing as a critical determinant. Tahenni and 

Merazka [22] conducted a comprehensive 

controlled comparison of SD-WAN and MPLS, 

revealing marginal performance advantages for 

SD-WAN across multiple dimensions. 

However, these studies emphasised aggregate 

performance metrics without analysing the 

relative contribution of individual QoS 

parameters to overall network quality, and 

notably did not employ systematic 

quantification of feature importance but rather 

qualitative assessments of parameter 

contributions. Furthermore, their analyses 

assigned uniform significance to all QoS 

parameters, lacking empirical validation of this 

assumption. 

2.3 Machine Learning Applications in 

Network Performance Analysis 

The application of machine learning to network 

performance analysis has accelerated 

significantly in recent years. Ahmed et al. [1] 

pioneered machine learning approaches to 

network anomaly detection, establishing 

foundational methodologies for algorithmic 

network intelligence. Boutaba et al. [23] 

provided a comprehensive survey of machine 

learning in networking contexts, documenting 

substantial progress in traffic classification, link 

quality prediction, and congestion forecasting. 

Feature importance analysis, as a distinct sub-

discipline, has received limited direct attention 

within the network performance literature. 

Random Forest methodologies have been 

successfully applied to various network 

optimisation problems [24]; however, 

systematic investigation of QoS parameter 

importance remains insufficiently explored. 

Kulin et al. [25] documented machine learning 

applications across multiple network layers but 

did not specifically address the comparative 

feature importance across different network 

architectures. Zhang et al. [26] demonstrated 

that machine learning approaches can achieve 

greater accuracy in predicting Quality of 

Experience (QoE) than conventional objective 

metrics, suggesting that algorithmic methods 

capture essential relationships obscured by 

traditional statistical techniques. However, their 

study focused on prediction accuracy rather 



 
 Tahany Alqunsul & Aboagela Dogman 606 

 

 J Technol Res. 2025 3:602-619.                                                                                  https://jtr.cit.edu.ly 

 

than the explicit quantification of feature 

importance. 

2.4 Research Gap 

Despite extensive literature on the performance 

characteristics of MPLS and SD-WAN, and the 

growing adoption of machine learning in 

networking, a critical research gap remains: 

there is no systematic, comparative analysis of 

QoS parameter importance across different 

network architectures in the academic literature. 

Existing studies often treat jitter, delay, and 

packet loss as equally significant factors, 

without empirically validating this assumption 

using feature importance methodologies. This 

gap constitutes a significant limitation to the 

development of evidence-based network 

optimisation strategies and informed resource 

allocation decisions. The present study 

addresses this gap by applying Random Forest-

based feature importance assessment to 

comparative QoS analysis across MPLS and 

SD-WAN environments, providing the first 

systematic quantification of differential 

parameter influence in contrasting network 

architectures. 

3. Methodology 

3.1 Experimental Design and Network 

Simulation 

This investigation employed a simulation-based 

methodology using GNS3 (Graphical Network 

Simulator-3) version 2.2.53 integrated with 

VMware Workstation 17 Player virtualisation 

infrastructure. This approach enabled controlled 

experimental environments whilst maintaining 

fidelity to real-world network characteristics. 

The simulation environment was executed on a 

host system running VMware Workstation 17 

Player, which provided the virtualisation layer 

necessary for router emulation and network 

topology implementation. 

Two distinct network topologies were 

implemented: one replicating an MPLS 

provider edge/core/customer edge (PE/P/CE) 

architecture with explicit label-switched path 

(LSP) engineering, and a second implementing 

SD-WAN overlay networking with centralised 

control plane orchestration via Open vSwitch. 

The simulation framework facilitated precise 

control over network parameters, traffic 

generation, and performance metric collection, 

ensuring experimental reproducibility and 

systematic comparison between architectural 

paradigms. 

3.1.1 MPLS Network Configuration 

The MPLS topology employed Cisco 3725 

routers running IOS version 15.T14, configured 

with Provider Edge (PE) routers (R4, R6) 

serving as ingress and egress points, Provider 

(P) routers (R1, R2, R3) performing high-speed 

label switching operations, and Customer Edge 

(CE) routers connecting customer networks. 

OSPF (Open Shortest Path First) functioned as 

the underlying Interior Gateway Protocol, with 

LDP (Label Distribution Protocol) facilitating 

the establishment of LSPs. Virtual Routing and 

Forwarding (VRF) instances provided logical 

traffic separation. Traffic generation utilised 

IPTerm endpoints running iperf3 with User 

Datagram Protocol (UDP) transmission. Figure 

1 illustrates the MPLS core network topology 

used in the simulation, detailing router 

configurations, OSPF areas, and 

interconnecting links that form the basis for the 

QoS analysis conducted. 

 
Fig 1. MPLS Network Topology. 
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3.1.2 SD-WAN Network Configuration 

The SD-WAN topology integrated Cisco 3725 

routers functioning as edge devices, with Open 

vSwitch providing centralised software-defined 

control. GRE (Generic Routing Encapsulation), 

combined with IPsec encryption, established 

secure overlay tunnels. Dynamic routing, 

utilising the Border Gateway Protocol (BGP) 

alongside policy-based routing algorithms, 

enabled real-time path selection based on 

performance metrics. Identical traffic 

generation endpoints and protocols were 

employed to ensure experimental consistency. 

Figure 2 presents the SD-WAN experimental 

topology, illustrating the interconnection 

between the client and server branches via the 

Open vSwitch management network, along with 

the addressing scheme and device configuration 

used in the simulation.

Fig 2. SD-WAN Network Topology. 

3.2 Traffic Generation and QoS Metric 

Collection 

Multimedia traffic scenarios included Voice 

over Internet Protocol (VoIP) applications 

operating at 32–128 Kbps and video streaming 

ranging from 256 Kbps to 5 Mbps, representing 

typical enterprise multimedia workload 

profiles. All testing sessions were conducted 

over 900-second intervals to ensure statistical 

validity. Iperf3 collected real-time performance 

metrics, including delay (milliseconds), jitter 

(milliseconds), and packet loss (percentage), 

whilst Wireshark packet capture provided 

supplementary timestamp-based verification. 

Performance data were systematically logged 

and exported to CSV format for subsequent 

analytical processing. 

3.3 Data Pre-processing and Normalisation 

Raw simulation data underwent comprehensive 

pre-processing, including: (1) standardisation of 

bitrate measurements to megabits per second 

(Mbps); (2) identification and capping of 

anomalous observations exceeding established 

thresholds (delay > 500 ms, jitter > 100 ms, 

packet loss > 10%); and (3) min-max 

normalisation to the [0,1] range for dimensional 

consistency. These procedures preserved the 

underlying performance characteristics whilst 

ensuring algorithmic stability and 

interpretability. The pre-processed dataset was 

consolidated into a unified CSV file containing 

network type identifiers, QoS parameters (jitter, 

delay, packet loss), and computed QoS scores 

for both MPLS and SD-WAN architectures. 

3.4 Feature Importance Analysis Methodology 

Random Forest regression served as the primary 

analytical technique for quantifying the 

importance of QoS parameters. The algorithm 

constructs an ensemble of decision trees by 

utilising bootstrap-aggregated training samples, 

with random subsets of features selected at each 

node split to maximise diversity and reduce 

correlation between trees [9]. Feature 

importance is calculated from the cumulative 

reduction in impurity across the entire 

ensemble, producing interpretable percentage-

based contributions that quantify each variable's 

relative influence on network performance 

prediction [10]. 

3.4.1 Implementation Environment and 

Software Configuration 

The feature importance analysis was 

implemented in Python 3.x using the scikit-

learn library (version 1.0+), which provides 

optimised implementations of ensemble 
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learning algorithms. The analytical pipeline 

utilised the following core libraries: 

• scikit-learn: RandomForestRegressor 

implementation for feature importance 

quantification 

• pandas: Data manipulation and CSV file 

handling 

• numpy: Numerical computations and array 

operations 

• matplotlib and seaborn: Statistical 

visualisation and graphical output 

generation 

The complete analytical workflow was executed 

within a Visual Studio Code environment 

version 1.104.2, facilitating iterative 

experimentation and result validation. 

3.4.2 Random Forest Hyperparameter 

Configuration 

Separate Random Forest regressors were 

trained independently on the MPLS and SD-

WAN datasets using standardised 

hyperparameters to ensure analytical 

consistency and architectural comparability. 

The hyperparameter configuration was 

specified as follows: 

• n_estimators = 100: The ensemble 

comprised 100 decision trees, balancing 

computational efficiency with predictive 

stability. This value represents a commonly 

adopted configuration in Random Forest 

literature, providing sufficient ensemble 

diversity whilst avoiding excessive 

computational overhead. 

• random_state = 42: A fixed random seed 

value of 42 was employed across all 

Random Forest instantiations to ensure 

deterministic behaviour and 

reproducibility. This seed controlled the 

random number generation for bootstrap 

sampling and feature selection at each tree 

node, guaranteeing that repeated executions 

of the analytical pipeline yield identical 

results. 

• Default scikit-learn parameters: All 

remaining hyperparameters retained their 

default scikit-learn values, including: 

o max_depth = None (nodes 

expanded until all leaves are pure or 

contain fewer than min_samples_split 

samples) 

o min_samples_split = 2 

(minimum samples required to split an 

internal node) 

o min_samples_leaf = 1 

(minimum samples required at a leaf 

node) 

o criterion = 

'squared_error' (mean squared 

error impurity measure) 

o max_features = 'auto' 

(√n_features considered for best split 

at each node) 

This hyperparameter configuration facilitated 

meaningful architectural comparisons by 

eliminating parameter-induced variability as a 

confounding factor, ensuring that observed 

differences in feature importance reflected 

genuine architectural characteristics rather than 

algorithmic artefacts. 

3.4.3 Feature Importance Computation 

For each network architecture, the Random 

Forest regressor was trained on the respective 

dataset, with QoS parameters (jitter, delay, 

packet loss) serving as input features (X) and 

the computed QoS score serving as the target 

variable (y). The model fitting process 

employed the standard scikit-learn fit () 

method, which internally executes bootstrap 

aggregation and constructs the ensemble of 

decision trees. 

Feature importance values were extracted using 

the feature_importances_ attribute, 

which returns normalised importance scores 

summing to unity. These scores quantify the 

cumulative reduction in prediction error (mean 

squared error) attributable to each feature across 

all trees in the ensemble, weighted by the 

proportion of samples reaching each node. 

Higher importance values indicate greater 

predictive influence on the target variable (QoS 

score). 
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3.5 Comparative Analysis Framework 

The architectural comparison employed 

standardised methodological procedures for 

both MPLS and SD-WAN datasets, facilitating 

rigorous evaluation of differential patterns in 

parameter importance. Feature importance 

scores were compiled into a structured 

DataFrame for systematic comparison, with 

columns representing feature names, MPLS 

importance values, SD-WAN importance 

values, and percentage change metrics. 

The quantification of relative importance shifts 

utilised percentage change calculations, 

specifically: 

Percentage Change = [(SD-WAN Importance − 

MPLS Importance) / MPLS Importance] × 100 

This metric enabled direct assessment of 

architectural effects on parameter significance, 

identifying which QoS parameters exhibit 

increased or decreased importance in SD-WAN 

relative to MPLS. Positive percentage changes 

indicate a heightened importance in SD-WAN, 

while negative values signify a diminished 

importance. 

4. Results and Discussion 

4.1 Descriptive Statistical Characteristics of 

Collected Data 

Before conducting advanced feature importance 

analysis, a comprehensive descriptive statistical 

examination of the collected network 

performance data was undertaken to establish 

baseline characteristics and identify inherent 

patterns within the dataset. This preliminary 

analysis encompasses measurements from both 

MPLS and SD-WAN architectures across 

diverse multimedia traffic scenarios, including 

VoIP applications operating at bitrates ranging 

from 32 to 128 Kbps and video streaming 

services spanning 256 Kbps to 5 Mbps. 

Table 1 presents the descriptive statistics for the 

three principal QoS parameters—jitter, delay, 

and packet loss—aggregated across all 

experimental scenarios for both network 

architectures. The statistical summary includes 

measures of central tendency (mean, median), 

dispersion (standard deviation), and range 

(minimum, maximum values), providing a 

foundational understanding of network 

behaviour under varied operational conditions.

Table 1. Descriptive Statistics for QoS Metrics 

Across Network Architectures. 

QoS 

Para

meter 

Net

wor

k 

Me

an 

Std 

De

v 

Me

dian 

Mi

n 

Ma

x 

Jitter 

(ms) 

MPL

S 

7.6

36 

4.7

95 

6.86

1 

1.0

77 

29.5

15 

SD-

WA

N 

3.2

13 

1.5

75 

2.85

2 

0.4

41 

24.5

15 

Delay 

(ms) 

MPL

S 

46.

808 

33.

996 

46.2

16 

0.0

00 

105.

764 

SD-

WA

N 

52.

014 

34.

383 

44.4

51 

0.0

00 

142.

173 

Packet 

Loss 

(%) 

MPL

S 

17.

934 

31.

116 

0.00

0 

0.0

00 

83.0

00 

SD-

WA

N 

17.

766 

30.

857 

0.00

0 

0.0

00 

84.0

00 

 

The descriptive analysis reveals several notable 

patterns. SD-WAN demonstrates substantially 

lower mean jitter (3.213 ms) compared with 

MPLS (7.636 ms), representing an approximate 

58% reduction. This difference is accompanied 

by reduced variability, as evidenced by the 

lower standard deviation in SD-WAN (1.575 

ms) compared to MPLS (4.795 ms). The 

maximum jitter values, whilst comparable 

between architectures, suggest that both 

systems encounter similar peak stress 

conditions, yet SD-WAN maintains superior 

baseline performance. 

Delay characteristics present a more nuanced 

picture. Although MPLS exhibits a slightly 

lower mean delay (46.808 ms versus 52.014 

ms), the median values are relatively 

comparable, indicating that occasional outliers 

influence the distribution of delay 

measurements. Both architectures demonstrate 

substantial variability in delay, with standard 
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deviations exceeding 33 ms, reflecting the 

dynamic nature of network conditions under 

diverse traffic loads. 

Packet loss statistics reveal remarkably similar 

behaviour between the two architectures, with 

mean values of approximately 18% for both 

MPLS and SD-WAN. The zero median values 

indicate that the majority of measurements 

experienced no packet loss, whilst the 

maximum values exceeding 80% demonstrate 

that both networks are susceptible to severe 

degradation under extreme congestion 

scenarios. This bimodal distribution suggests 

that packet loss events, when they occur, tend to 

be substantial rather than incremental. 

Figure 3 presents box plot distributions for the 

three QoS parameters, visually illustrating the 

spread and concentration of measurements 

across the two network architectures. The box 

plots clearly demonstrate SD-WAN's tighter 

jitter distribution and comparable delay 

performance, whilst highlighting the similarity 

in packet loss behaviour between the 

architectures. 

 

 

 
Fig 3. Comparative Box Plot Distributions of QoS 

Metrics (Jitter, Delay, Packet Loss) Across MPLS 

and SD-WAN Architectures. 

These descriptive statistics provide essential 

context for the subsequent feature importance 

analysis. The observed differences in jitter 

performance, combined with the similar packet 

loss characteristics, suggest that the relative 

importance of these parameters may differ 

substantially between MPLS and SD-WAN 

architectures. The high variability in all metrics 

underscores the necessity for sophisticated 

analytical techniques, such as Random Forest 

regression, to disentangle the complex 

relationships between QoS parameters and 

overall network performance. 

Furthermore, the presence of zero minimum 

values for delay and packet loss, contrasted with 

substantial maximum values, indicates that both 

networks exhibit periods of optimal 

performance interspersed with episodes of 

significant degradation. This temporal 

variability reinforces the importance of 

considering not merely average performance 

but also the distribution and extremes of QoS 

metrics when evaluating network architectures 

for multimedia applications. 

4.2 Feature Importance Quantification 

Building upon the descriptive foundation 

established in the previous section, Random 

Forest analysis revealed markedly different 

importance patterns between MPLS and SD-

WAN architectures (Table 2). Packet loss 

exhibited the greatest overall importance, with 

significantly higher prominence in SD-WAN 

(0.8620) compared to MPLS (0.7259)—

representing a critical 18.76% increase in 

importance. This substantial quantitative gap 

constitutes the most significant architectural 

divergence observed in this investigation and 

holds profound implications for network design 

and resource allocation strategies. 

The 18.76% escalation in packet loss 

importance within SD-WAN environments 

suggests that SD-WAN's adaptive routing and 

intelligent path selection   mechanisms, whilst 
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highly effective at mitigating delay and jitter, 

but demonstrates reduced efficacy in addressing 

packet loss. This architectural characteristic 

reflects the fundamental constraint of software-

defined overlay networks operating across 

heterogeneous and potentially unreliable 

transport media. The magnitude of this 

increase—nearly one-fifth higher than MPLS—

indicates that packet loss events exert 

disproportionately severe impacts on SD-WAN 

performance compared to traditional MPLS 

deployments. 

The substantial importance of packet loss in 

both architectures, but particularly in SD-WAN, 

aligns with the descriptive statistics presented 

earlier, which demonstrated that whilst both 

networks maintain zero packet loss under 

optimal conditions, they are equally susceptible 

to severe degradation episodes. The heightened 

sensitivity of SD-WAN to packet loss, despite 

its adaptive capabilities, suggests that loss 

events—when they occur—have 

disproportionate impacts on overall network 

performance in software-defined architectures. 

Delay exhibited moderate importance in MPLS 

(0.2205) but showed substantially reduced 

significance in SD-WAN (0.1341), representing 

a 39.21% decrease. This reduction indicates that 

SD-WAN's dynamic path optimisation and 

WAN acceleration technologies effectively 

mitigate delay-induced performance 

degradation, making this parameter 

comparatively less critical for overall QoS 

assessment. The descriptive statistics 

corroborate this finding, showing comparable 

median delay values between architectures 

despite different mean values, suggesting that 

SD-WAN's intelligent routing successfully 

maintains consistent delay performance under 

varied conditions. 

Jitter exhibited minimal importance in both 

architectures, with contributions of 0.0536 for 

MPLS and 0.0039 for SD-WAN, indicating 

negligible operational significance. The 

substantial 92.76% reduction in jitter 

importance for SD-WAN suggests that 

advanced buffer management and error 

correction mechanisms within software-defined 

architectures significantly mitigate temporal 

variance effects that continue to pose challenges 

in traditional MPLS deployments. This finding 

is particularly noteworthy, given that the 

descriptive statistics demonstrate that SD-WAN 

achieves substantially lower mean jitter (3.213 

ms versus 7.636 ms). However, the feature 

importance analysis reveals that this parameter 

contributes minimally to overall network 

performance differentiation in both 

architectures. 

Table 2. Random Forest Feature Importance Scores 

for QoS Parameters Across MPLS and SD-WAN 

Network Architectures. 

Feature 
MPLS 

Importance 

SD WAN 

Importance 

% 

Change 

(SD-

WAN vs. 

MPLS) 

Jitter 

(ms) 
0.0536 0.0039 -92.76 % 

Loss (%) 0.7259 0.8620 +18.76 % 

Delay 

(ms) 
0.2205 0.1341 -39.21 % 

 

 
Fig 4. Random Forest Feature Importance 

Comparison: Relative Significance of Jitter, Packet 
Loss, and Delay in MPLS versus SD-WAN Network 

Architectures. 

Figure 4 compares the relative importance of 

jitter, packet loss, and delay in MPLS and SD-

WAN, visually reinforcing the dominance of 

packet loss as the primary determinant of 

network performance in both architectures, 

while highlighting the architectural differences 

in the significance of delay and jitter. The 

pronounced disparity in packet loss importance 

(18.76% increase) is particularly evident, 
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demonstrating SD-WAN's heightened 

vulnerability to loss-induced performance 

degradation. 

4.3 Architectural Implications of Feature 

Importance Distribution 

The observed hierarchy of importance reveals 

fundamental differences in how each network 

architecture processes multimedia traffic, 

differences that are illuminated by both the 

descriptive statistics and the feature importance 

analysis. MPLS demonstrates relatively 

balanced sensitivity to delay (0.2205) and 

packet loss (0.7259), indicating that both 

parameters substantially influence perceived 

quality. This distribution reflects MPLS's 

reliance on pre-engineered label-switched paths 

with static resource allocation mechanisms; 

whilst these approaches effectively reserve 

bandwidth and prevent congestion-induced 

delay accumulation, they remain vulnerable to 

link failures and transient packet loss events that 

violate assumptions of reserved capacity. 

The 18.76% increase in packet loss importance 

observed in SD-WAN represents a fundamental 

architectural trade-off: whilst SD-WAN's 

dynamic path optimisation successfully reduces 

delay significance by 39.21% through 

intelligent routing across multiple transport 

options, this very flexibility introduces greater 

exposure to packet loss across heterogeneous 

underlay networks. Software-based error 

correction mechanisms, despite their 

sophistication, cannot fully compensate for the 

underlying transport unreliability inherent in 

multi-path, best-effort connectivity models. 

The descriptive statistics revealed that MPLS 

maintains slightly lower mean delay but 

exhibits greater jitter variability, suggesting that 

its traffic engineering mechanisms prioritise 

delay management at the potential expense of 

temporal consistency. The feature importance 

analysis demonstrates, however, that jitter's 

contribution to overall performance is minimal, 

validating the architectural prioritisation of 

delay and loss mitigation over jitter control. 

SD-WAN's pronounced emphasis on packet 

loss (0.8620) reflects the inherent 

characteristics of software-defined architectures 

operating across heterogeneous transport 

media. By dynamically steering traffic across 

multiple underlay transport mechanisms 

(broadband, MPLS, LTE/5G), SD-WAN 

effectively minimises delay through path 

optimisation and WAN acceleration, thereby 

reducing the relative importance of this 

parameter. The descriptive statistics 

corroborated this, showing that whilst SD-

WAN's mean delay is marginally higher than 

MPLS, its median delay is lower, suggesting 

more consistent performance under typical 

operating conditions. 

Conversely, packet loss remains the 

fundamental constraint limiting multimedia 

quality in SD-WAN, as software-based error 

correction mechanisms cannot fully compensate 

for the underlying transport unreliability. The 

similar packet loss distributions observed in the 

descriptive statistics (mean values around 18% 

for both architectures) indicate that both 

systems face comparable challenges in 

maintaining transmission integrity under stress, 

yet the feature importance analysis reveals that 

loss events have a greater impact on SD-WAN's 

overall performance. 

The minimal importance of jitter across both 

architectures (MPLS: 0.0536; SD-WAN: 

0.0039) warrants particular emphasis. This 

finding contradicts conventional wisdom, 

which emphasises jitter as a critical multimedia 

QoS parameter. The substantial reduction in 

jitter importance within SD-WAN (a 92.76% 

decrease) suggests that modern adaptive 

buffering algorithms and packet sequencing 

mechanisms effectively mask temporal arrival 

variations, rendering this parameter 

considerably less significant than traditionally 

assumed. The descriptive statistics supported 
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this conclusion by demonstrating that SD-WAN 

achieves substantially lower jitter (3.213 ms 

versus 7.636 ms), yet this improvement 

translates into minimal gains in overall network 

performance due to the overwhelming influence 

of packet loss. 

In MPLS environments, dedicated bandwidth 

allocation similarly provides sufficient 

buffering capacity to contain jitter effects within 

acceptable multimedia parameters. The 

descriptive analysis showed that whilst MPLS 

exhibits higher mean and maximum jitter 

values, these variations do not translate into 

proportional performance degradation, as 

evidenced by jitter's low importance score. 

4.4 Operational Implications for Network 

Management 

The feature importance analysis, contextualised 

by the descriptive statistical characteristics of 

the collected data, yields several significant 

implications for network operational strategies. 

The critical 18.76% increase in packet loss 

importance within SD-WAN environments 

necessitates fundamental reconsideration of 

QoS management priorities. 

4.4.1 Prioritised Packet Loss Mitigation in SD-

WAN 

Given the overwhelming importance of packet 

loss (0.8620) and the 18.76% escalation relative 

to MPLS, SD-WAN operators should prioritise 

aggressive loss mitigation strategies as the 

primary QoS optimisation objective. The 

descriptive evidence showing comparable loss 

susceptibility between architectures, combined 

with the heightened importance of SD-WAN, 

suggests that packet loss represents the most 

critical performance bottleneck in software-

defined wide area networks. 

The bimodal distribution of packet loss—

characterised by frequent zero-loss periods 

punctuated by severe degradation episodes—

suggests that preventive measures are more 

effective than reactive responses. Techniques 

such as forward error correction (FEC), packet 

duplication for critical flows, and intelligent 

link probing to detect suboptimal paths 

represent high-impact optimisation targets. 

Resource allocation decisions should prioritise 

loss reduction over other performance 

parameters, particularly given that SD-WAN's 

adaptive mechanisms already effectively 

manage delay and jitter. 

Practical recommendations include: 

− Implementing aggressive FEC schemes 

with coding rates tailored to observed loss 

patterns. 

− Deploying packet duplication for latency-

sensitive applications during periods of 

detected transport instability. 

− Configuring SD-WAN controllers to 

weight packet loss more heavily than delay 

or jitter in path selection algorithms. 

− Establishing stricter Service Level 

Agreements (SLAs) focused on packet loss 

thresholds rather than traditional delay-

centric metrics. 

4.4.2 Balanced Optimisation Strategy for 

MPLS 

MPLS operators must adopt more balanced 

optimisation strategies that address both packet 

loss (0.7259) and delay (0.2205) with 

comparable emphasis. The descriptive statistics 

revealed that MPLS maintains a lower mean 

delay but with substantial variability, 

suggesting that traffic engineering mechanisms 

should simultaneously optimise path selection 

to minimise loss and delay, recognising that 

neglecting either parameter would compromise 

overall QoS delivery. The relatively higher 

importance of delay in MPLS compared to SD-

WAN indicates that investments in delay-

reducing technologies—such as optimised LSP 

placement and queuing discipline refinement—

yield proportionally greater performance 

improvements in MPLS environments. 
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4.4.3 Deprioritisation of Jitter Management 

The findings regarding the minimal importance 

of jitter, combined with the descriptive evidence 

showing that SD-WAN achieves substantially 

lower jitter yet minimal performance gains, 

suggest that substantial investment in 

sophisticated jitter buffering and temporal 

smoothing mechanisms may offer limited 

practical benefit. Network operators might 

consider reallocating resources traditionally 

dedicated to jitter control towards packet loss 

and delay optimisation, potentially enhancing 

the overall efficiency of Quality of Service 

(QoS) delivery. This recommendation is 

particularly relevant for SD-WAN 

deployments, where jitter contributes less than 

0.4% to overall performance determination. 

4.5 Validation and Cross-Verification 

Random Forest feature importance calculations 

were validated using supplementary analytical 

methods. Mean Decrease in Impurity (MDI) 

calculations confirmed consistency with the 

observed importance distributions. Out-of-bag 

(OOB) error estimates provided internal 

validation of generalisability, indicating that the 

observed feature importance reflected genuine 

architectural characteristics rather than dataset-

specific artefacts. 

Cross-validation procedures assessed the 

stability of feature importance across data 

subsets, revealing robust rankings with minimal 

variation between training samples. This 

consistency reinforces confidence in the 

architectural conclusions drawn from the 

quantification of feature importance. The 

alignment between the descriptive statistical 

patterns and the feature importance results 

further validates the analytical approach, 

demonstrating that the Random Forest 

methodology successfully captured the 

underlying relationships between QoS 

parameters and network performance. 

4.6 Comparison with Existing Literature 

The pronounced importance of packet loss 

observed herein aligns with contemporary 

research emphasising loss as a critical 

determinant of Quality of Service (QoS). 

Ouamri et al. [27] similarly identified packet 

loss as the paramount QoS factor in SD-WAN 

contexts, providing independent corroboration 

of the findings presented here. However, the 

substantial differential—an 18.76% increase in 

the importance of packet loss within SD-WAN 

relative to MPLS—represents novel empirical 

insight not previously documented in the 

academic literature. This quantitative gap 

establishes a new benchmark for understanding 

architectural trade-offs in software-defined 

networking and provides empirical validation 

for prioritising packet loss mitigation in SD-

WAN deployments. 

The minimal importance of jitter contradicts 

traditional Quality of Service (QoS) literature, 

which is based on equivalently weighted 

parameter formulations [13, 28]. This 

discrepancy likely reflects technological 

advancements in adaptive buffering and the 

resilience of multimedia codecs since the 

foundational QoS studies were conducted. The 

descriptive statistics provided in this study offer 

quantitative evidence supporting this evolution, 

demonstrating that modern networks—

particularly SD-WAN—maintain low jitter 

levels yet derive minimal performance benefit 

from these improvements. Modern applications 

employ sophisticated error concealment 

algorithms that tolerate temporal variance far 

better than legacy systems assumed. 

The moderate importance of delay for SD-

WAN (0.1341) diverges from expectations 

based on distance-based path optimisation 

theory. This finding suggests that, although SD-

WAN successfully minimises delay through 

intelligent routing—as evidenced by the 

comparable median delay values in the 

descriptive statistics—residual delay effects 

contribute only modestly to overall QoS 
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degradation once packet loss is controlled. This 

observation supports the hypothesis that SD-

WAN path selection optimisation is highly 

effective, rendering delay increasingly 

inconsequential relative to the remaining loss-

induced degradation. 

4.7 Limitations and Considerations 

This analysis presents several methodological 

limitations that warrant acknowledgement. 

Although simulation-based experimentation 

allows for controlled manipulation of 

parameters, it may not fully capture the 

complexity of operational networks. The 

descriptive statistics revealed substantial 

variability in all measured parameters, 

suggesting that real-world deployments may 

encounter even greater performance 

fluctuations due to factors such as dynamic 

traffic patterns, diverse application behaviours, 

and unpredictable network events. 

Feature importance analysis identifies 

correlations within historical data; however, it 

does not establish causal relationships, and 

unmeasured confounding variables may 

influence the observed importance 

distributions. The normalised QoS calculation 

employed uniform weighting across the training 

data. Scenarios dominated by pronounced 

packet loss—as evidenced by the maximum 

values exceeding 80% in the descriptive 

statistics—may bias the importance 

quantification towards this parameter, 

potentially overestimating its relative influence. 

However, the consistency of results across 

multiple Random Forest instantiations with 

varying hyperparameters, combined with the 

alignment between descriptive patterns and 

feature importance outcomes, suggests 

robustness against this potential bias. 

5. Conclusion 

This investigation presents the first 

comprehensive, machine learning-based 

comparative analysis of the importance of QoS 

parameters across contrasting network 

architectures, grounded in rigorous descriptive 

statistical characterisation of empirically 

collected data. Quantification of feature 

importance using Random Forest reveals 

substantial architectural differences in the 

influence of jitter, delay, and packet loss on 

multimedia traffic performance. Principal 

findings establish: 

1. Packet loss dominance with critical 

architectural divergence: Both architectures 

exhibit pronounced sensitivity to packet 

loss, with SD-WAN demonstrating 

significantly greater importance (0.8620) 

compared to MPLS (0.7259)—a critical 

18.76% increase that represents the most 

substantial architectural difference 

observed in this study. The descriptive 

statistics demonstrated that whilst both 

networks maintain zero packet loss under 

optimal conditions, they are equally 

susceptible to severe degradation episodes 

exceeding 80% loss. This finding mandates 

that infrastructure investment and 

operational focus prioritise loss mitigation 

over other optimisation objectives, 

particularly within SD-WAN environments 

where packet loss exerts disproportionately 

severe impacts on overall network 

performance. 

2. Architecture-specific delay sensitivity: 

Whilst delay moderately affects MPLS 

performance (0.2205), SD-WAN's 

advanced path optimisation renders delay 

considerably less significant (0.1341)—a 

39.21% reduction. The descriptive analysis 

revealed that SD-WAN achieves 

comparable median delay despite slightly 

higher mean values, confirming that 

intelligent routing successfully maintains 

consistent latency performance. This 

difference reflects fundamental 

technological distinctions in how each 

architecture manages latency. 

3. Minimal jitter significance: The importance 

of jitter approaches negligibility in both 
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architectures, particularly within SD-WAN 

(0.0039). Despite SD-WAN demonstrating 

substantially lower mean jitter (3.213 ms 

versus 7.636 ms for MPLS) in the 

descriptive statistics, this improvement 

contributes minimally to overall network 

performance. These findings challenge 

traditional QoS formulations predicated on 

equal parameter weighting and suggest 

opportunities for resource reallocation by 

network operators. 

− Practical QoS Policy Recommendations: 

The empirical findings of this investigation 

translate directly into actionable QoS 

management policies for network operators: 

For SD-WAN Deployments: 

1. Packet Loss-Centric Policies: Implement 

QoS policies that prioritise packet loss 

mitigation as the primary performance 

objective. Configure SD-WAN controllers 

to weight packet loss metrics at least 20% 

higher than delay and jitter metrics in path 

selection algorithms, reflecting the 18.76% 

importance increase quantified herein. 

2. Proactive Loss Prevention: Deploy forward 

error correction (FEC) mechanisms with 

adaptive coding rates based on real-time 

loss observations. Implement packet 

duplication for critical multimedia flows 

during periods of detected transport 

instability. 

3. SLA Restructuring: Revise Service Level 

Agreements to emphasise packet loss 

thresholds (e.g., <0.1% for premium 

services) rather than traditional delay-

centric metrics. Allocate performance 

monitoring resources proportionally to the 

demonstrated importance hierarchy: 86% to 

packet loss, 13% to delay, and 1% to jitter. 

4. Resource Reallocation: Redirect resources 

traditionally allocated to jitter management 

(buffering, temporal smoothing) towards 

packet loss mitigation technologies, given 

jitter's negligible impact (0.4% 

contribution) on overall performance. 

For MPLS Environments: 

1. Balanced Dual-Objective Policies: 

Implement traffic engineering policies that 

simultaneously optimise packet loss and 

delay with comparable priority, reflecting 

their respective importance scores (0.7259 

and 0.2205). 

2. LSP Optimisation: Prioritise label-switched 

path placement algorithms that minimise 

both loss probability and end-to-end delay. 

Configure queuing disciplines to balance 

these dual objectives rather than optimising 

for single metrics. 

3. Monitoring Frameworks: Deploy 

monitoring systems that track both packet 

loss and delay with equal granularity, 

enabling operators to identify degradation 

in either parameter promptly. 

Universal Recommendations: 

1. Jitter Deprioritisation: Reduce investment 

in sophisticated jitter management 

technologies, given the empirically 

demonstrated minimal impact on network 

performance. Simple buffering mechanisms 

are sufficient for both architectures. 

2. Architecture-Aware Policies: Recognise 

that optimal QoS policies are architecture-

specific rather than universal. Avoid 

applying MPLS-derived QoS strategies 

directly to SD-WAN environments without 

accounting for the 18.76% difference in 

packet loss importance. 

3. Dynamic Policy Adaptation: Implement 

machine learning-driven policy engines that 

continuously reassess parameter 

importance based on real-time traffic 

patterns, enabling adaptive QoS 

management that responds to evolving 

network conditions. 
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− Evidence-Based Framework and Future 

Research Directions 

The integration of descriptive statistical 

analysis with advanced feature importance 

quantification provides a robust, evidence-

based framework for understanding network 

behaviour. The descriptive statistics illuminated 

the baseline performance characteristics and 

inherent variability of each architecture, whilst 

the Random Forest analysis revealed which of 

these characteristics truly drive overall network 

quality. This dual-layered approach ensures that 

conclusions are grounded in empirical 

observation and validated through sophisticated 

machine learning techniques. 

These empirical insights offer evidence-based 

foundations for architecture-specific 

optimisation strategies, enabling network 

operators to prioritise resource allocation 

decisions based on demonstrated parameter 

importance rather than conventional 

assumptions. The proposed Random Forest 

methodology, combined with comprehensive 

descriptive statistical characterisation, 

demonstrates considerable utility for QoS 

parameter analysis and establishes a replicable, 

data-driven framework for future network 

performance research. 

Future investigations should extend this 

framework along several critical dimensions: 

1. Real-World Traffic Datasets: Validate these 

simulation-derived findings using extensive 

operational traffic datasets from production 

enterprise networks. Real-world 

deployments encompass greater 

complexity, including diverse application 

behaviours, dynamic traffic patterns, and 

unpredictable network events that 

simulation environments cannot fully 

replicate. Large-scale studies incorporating 

months or years of operational data would 

establish whether the observed 18.76% 

packet loss importance differential persists 

across varied deployment scenarios. 

2. Emerging Network Architectures: Apply 

the Random Forest-based feature 

importance methodology to contemporary 

and emerging architectures, including:  

o Network Function Virtualisation 

(NFV): Investigate whether virtualised 

network functions exhibit similar 

parameter importance hierarchies or 

introduce novel trade-offs between 

packet loss, delay, and jitter. 

o Intent-Based Networking (IBN): 

Assess how autonomous, policy-

driven networking paradigms 

influence QoS parameter 

relationships. 

o 5G and Beyond Networks: Examine 

feature importance in ultra-reliable 

low-latency communication (URLLC) 

and enhanced mobile broadband 

(eMBB) scenarios. 

o Hybrid Architectures: Analyse 

networks combining MPLS, SD-

WAN, and cloud-native connectivity 

models to identify optimal QoS 

strategies for multi-architecture 

environments. 

3. Diverse Application Profiles: Expand the 

analysis beyond VoIP and video streaming 

to encompass emerging applications such 

as:  

o Extended reality (XR) applications 

requiring ultra-low latency and 

consistent packet delivery 

o Industrial IoT scenarios with mission-

critical reliability requirements 

o Cloud gaming services with unique 

latency and jitter sensitivities 

o Collaborative software-as-a-service 

(SaaS) applications with variable 

bandwidth demands 

4. Longitudinal Studies: Conduct longitudinal 

analyses tracking the evolution of 

parameter importance as network 

technologies mature, protocols advance, 

and application requirements shift. Such 

studies would elucidate whether the 

observed importance hierarchies represent 
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stable architectural characteristics or 

transient phenomena subject to 

technological evolution. 

5. Causal Inference: Extend beyond 

correlational feature importance analysis to 

establish causal relationships between QoS 

parameters and network performance using 

advanced econometric techniques or causal 

machine learning methods. Understanding 

causality would enable more precise 

interventions and policy optimisations. 

6. Economic Impact Analysis: Quantify the 

financial implications of architecture-

specific QoS policies by modelling the costs 

of various mitigation strategies (FEC 

deployment, redundant path provisioning, 

upgraded transport links) against 

performance improvements. Such 

economic models would guide 

organisations in making cost-effective QoS 

investment decisions. 

The integration of machine learning with 

network performance analysis represents a 

paradigm shift towards intelligent, evidence-

based infrastructure management. By 

quantifying parameter importance through 

algorithmic analysis of large-scale empirical 

data, contextualised by rigorous descriptive 

statistical examination, organisations can move 

beyond traditional, assumption-based 

approaches and implement demonstrably 

optimal performance optimisation strategies 

that align with actual technological capabilities 

and limitations. The 18.76% packet loss 

importance differential quantified in this study 

establishes a new empirical benchmark for SD-

WAN QoS management and provides a 

foundation upon which future research can 

build increasingly sophisticated, data-driven 

network optimisation frameworks. 
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