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ABSTRACT 

Medical image segmentation is a fundamental task for accurate automated diagnosis, treatment planning, 

and clinical decision-making. This study presents a comparative evaluation of the LeViT-UNet model a 

convolutional encoder decoder network enhanced with transformer blocks on imbalanced computed 

tomography (CT) datasets. Two loss functions were investigated: the traditional Focal Loss and the 

composite Focal-Tversky Loss. The model was trained and validated on annotated CT slices exhibiting 

high class imbalance to assess segmentation accuracy and convergence stability. Experimental results 

reveal that training with Focal Loss enables faster convergence and achieves higher Dice and Jaccard 

scores during early epochs by emphasizing challenging samples. In contrast, the Focal-Tversky Loss 

achieves a better trade-off between sensitivity and specificity, leading to improved stability and 

generalization across imbalanced data. These findings underscore the importance of selecting task-

specific loss functions for medical image segmentation and demonstrate that integrating LeViT-UNet 

with Focal-Tversky Loss provides a robust and consistent framework suitable for clinical applications 

demanding high precision. 
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تحقيق تجزئة دقيقة للصور الطبية غير المتوازنة: دراسة مقارنة
2هشام حامد أمين  ،1اماني الأربش  ،1أحمد العجيلي الرجيبي ، 1آمال ابوعجيلة أوشاح 

 .قسم هندسة الحاسوب وتقنية المعلومات، جامعة صبراتة، كلية الهندسة، صبراتة، ليبيا1 
 . قسم الهندسة الكهربائية، كلية الهندسة، جامعة سوهاج، سوهاج، مصر2 

ملخــــــــــــــــص البحــــــــــــــــــث .
أن تجزئة الصوووووووووووووور الربية مهمة جوهراة بي المجال الربي،  م تعيمد لشوووووووووووووم  ميزاقد علن تقنيات اليعلم العمي ، لكنها تواج  تحد ات 
مسوووويمرل مخ  ا يول توالن ال، ات، حيغ تشوووو   احبات مسوووواحة محدولل مقارنة لال لوية. تعيمد جولل اليجزئة بدرجة كبيرل علن ا ييار 

، وهو نمومج  LeViT-UNetبة القالرل علن معالجة الا يول ل،عالية. تهدف هذه الورقة  لن مقارنة ألاء نمومج  لوال ال سوووووووارل المناسووووووو
لمعالجة    Focal-Tversky Lossو  Focal Lossهجين  جمع بين الشووووووبمات اليوويوية وكي  المحولات، لاسووووووي دام لاليي ال سووووووارل 

ا يول توالن ال، ات. تم تدراب النمومج وتقييم  علن مجموعة بيانات للأشووووووووووووووعة المقرطية ليجواف البرن المعروبة لعدم توالن ب اتها، 
 لن جانب تحلي  اسووووووووويقرار اليدراب. أاهرت النيائد أن اسوووووووووي دام لالة    Jaccardو  Diceوتم قياس لقة اليجزئة لاسوووووووووي دام م شووووووووور   
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Focal Loss  ،ا بي المراح  الأولن من اليدراب من  ول اليركيز علن العينات الصوووووووطبة  سووووووورقا من تقارب النمومج واحق  ألاء  جيد 
ن قدرت  علن اليعميم   توالن ا أبضو  بين  Focal-Tversky Lossبينما توبر لالة   الحسواسوية والنوةية، مما  عزل اسويقرار النمومج واحسوق

بي البيانات غير الميوالنة. تبُرل النيائد أهمية ا ييار لوال  سارل مناسبة لميرلبات المهمة ليحسين جولل تجزئة الصور الربية، وت كد
م  طار ا موثوق ا وبعقالا  ليربيقات طبية تيرلب لقة عالية. Focal-Tversky Lossمع  LeViT-UNetأن لمد    قدق

LeViT-UNet. ج تفِرسكي، نموذ-تجزئة الصور الطبية، دالة خسارة فوكل، دالة خسارة فوكل ة:لادالكلمات ال

1. INTRODUCTION

Medical The ability to precisely delineate 

anatomical structures and pathological regions 

from medical images is a cornerstone of 

contemporary clinical practice. This process of 

medical image segmentation provides the 

foundational data for accurate diagnosis, 

tailored treatment planning, and informed 

clinical decision-making [1]. Despite its 

importance, achieving robust segmentation 

remains a formidable challenge, particularly 

when dealing with imbalanced datasets where 

clinically critical structures—such as small 

tumors or fine vessels—occupy only a minute 

portion of the total image area. This imbalance 

often causes deep learning models to develop a 

bias toward the dominant class, ultimately 

compromising their utility for precise analysis 

[2]. Addressing this vulnerability has become a 

central focus in medical AI, driving innovation 

in both model architectures and training 

paradigms [3]. In response, the field has 

witnessed a surge of advanced neural network 

designs. Among the most promising are hybrid 

models like LeViT-UNet, which integrate 

lightweight transformer modules into the classic 

U-Net architecture [4]. By combining the

convolutional neural network's (CNN)

proficiency at extracting local features with the

transformer's strength in modeling long-range

dependencies, these models capture a richer

spectrum of contextual information. This

synergy has proven especially valuable for

complex segmentation tasks, with LeViT-UNet

itself demonstrating notable efficacy on

imbalanced datasets [3, 4]. However, even the

most sophisticated architecture is only as

effective as the function used to train it. The

choice of loss function is therefore paramount. 

Traditional loss functions, including those 

based on the Dice and Jaccard indices, often fall 

short in imbalanced settings because they treat 

all pixels equally, allowing the gradient from 

the vast background to overwhelm the signal 

from small foreground structures [2]. This 

limitation has spurred the development of more 

nuanced alternatives. Loss functions such as 

Focal Loss and Focal-Tversky Loss are 

specifically engineered to counteract class 

imbalance by dynamically adjusting the 

learning focus. They apply greater weight to 

hard-to-classify examples and, in the case of 

Focal-Tversky, can strategically penalize false 

negatives, thereby enhancing a model's 

sensitivity and specificity for minority classes 

[1, 2]. Their potential to significantly improve 

segmentation performance in challenging 

contexts is now increasingly recognized. While 

LeViT-UNet presents a powerful architecture 

and these advanced loss functions offer 

compelling theoretical benefits, a clear, 

empirical evaluation of their combined efficacy 

is needed. How does the integration of Focal 

Loss or Focal-Tversky Loss specifically 

influence the convergence behavior and final 

segmentation accuracy of LeViT-UNet on 

imbalanced medical data? This study seeks to 

answer that question. We present a 

comprehensive performance evaluation of the 

LeViT-UNet model applied to imbalanced CT 

image segmentation, directly comparing the 

impacts of the Focal and Focal-Tversky loss 

functions. Through this analysis, we aim to 

identify optimal training configurations and 

provide insights that contribute to the 

development of more reliable and robust 

automated diagnostic systems. 
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2. MATERIALS AND METHODS

2.1. Model Selection 

This paper employs the LeViT-UNet [5] hybrid 

model as the foundation due to its capability to 

combine the traditional UNet architecture with 

transformer blocks effectively. This integration 

enables the model to capture global contextual 

features through transformers, while retaining 

high-resolution spatial information from UNet. 

Additionally, the model's skip connections 

facilitate more precise segmentation by fusing 

low-level features with the global context, 

which is particularly advantageous for medical 

image segmentation tasks. To enhance model 

performance, the focal loss function is utilized 

because it counteracts class imbalance by 

reducing the loss weight assigned to easily 

classified samples and concentrating more on 

difficult or misclassified instances. This 

strategy significantly improves segmentation 

quality, especially for small or 

underrepresented anatomical structures in 

medical images. 

2.2. Dataset 

Two datasets his study leverages two publicly 

available medical imaging datasets to evaluate 

the model's performance under class imbalance. 

The first is the Synapse multi-organ 

segmentation dataset [6], which comprises 30 

abdominal CT scans. From these scans, a total 

of 3,779 axial contrast-enhanced clinical CT 

images were extracted for analysis. The dataset 

is partitioned into 18 cases for training and 12 

for validation. Its annotation covers eight 

distinct abdominal organs: the aorta, 

gallbladder, spleen, left kidney, right kidney, 

liver, pancreas, and stomach, providing a 

benchmark for multi-class organ segmentation. 

The second dataset is the Automated Cardiac 

Diagnostic Challenge (ACDC) [6], collected 

from cine MRIs of 150 patients. It includes 100 

fully annotated volumes, which we divided into 

80 training and 20 validation samples, with an 

additional 50 volumes reserved for evaluation. 

This dataset presents a distinct and challenging 

multi-label segmentation scenario. A significant 

challenge arises from the pronounced 

anatomical overlap between the stomach, large 

intestine, and small intestine. This overlap not 

only creates a natural class imbalance but also 

demands that the model learn to make fine-

grained distinctions between multiple adjacent 

target regions and the background within the 

same image area. 

2.3 Loss Functions 

Loss functions have a critical role in optimizing 

deep learning models and influencing their 

convergence during training. They are 

particularly important in addressing challenges 

such as class imbalance in training datasets, 

which forms the core of this study [7]. Among 

many loss functions designed to tackle these 

issues, the Focal Loss [8] stands out for its 

ability to focus training on hard-to-classify 

samples by down-weighting easy examples. 

Meanwhile, the hybrid Focal-Tversky Loss [2]. 

combines the advantages of Focal Loss with the 

Tversky loss, providing enhanced flexibility to 

balance false positives and false negatives, 

which is essential for segmenting imbalanced 

medical images. 

Focal loss: is a form of binary cross-entropy 

loss that addresses the class imbalance problem 

with standard cross-entropy loss by reducing 

the contribution of positive samples [8]. 

(𝑝𝑡) = -α(1 - 𝑝𝑡)𝛾  log (𝑝𝑡) 

where, γ > 0 and when γ = 1 Focal Loss works 

like Cross-Entropy loss function, and α ranges 

from [0,1] that can be treated as a 

hyperparameter. 

Focal-Tversky loss: this function is inspired by 

the Focal loss adaptation of the cross-

entropy loss, the Focal Tversky loss adapts 

the Tversky loss by applying a focal 

parameter. 
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where 𝑳𝑻
𝑪 represents the Tversky loss of class c. 

Focal Tversky loss is identical to Tversky 

loss for γ = 1. 

[1,3] for γ that makes the model focus on 

misclassified pixels. However, when the 

training is close to convergence Focal Tversky 

loss becomes suppressed and prevents the 

model from pushing for complete convergence. 

3. RESULTS AND DISCUSSION 

3.1 Implementation Details 

The experiments are conducted using Python 

3.7.10, PyTorch 1.9.1, and Linux 5.15.154+-

x86_64. The optimizer used is Adam, which has 

a learning rate of 2e-3. All models are trained 

on a Tesla P100-PCIE GPU with 16GB 

memory. The input resolution of images is 

224x224, with a batch size of 8 for training and 

16 for validation. The models used transformer 

backbones pre-trained on ImageNet-1k, and 

training is conducted for 30 epochs on the 

Synapse and ACDC datasets.  

3.2 Results 

To emphasize the pivotal role of loss functions 

in enhancing medical image segmentation 

tasks, two scenarios were assessed: one 

employing the focal loss function, and the other 

operating with focal-Tversky loss. The results 

of this comparison, summarized in Table (1), 

demonstrate the segmentation accuracy and 

model robustness, particularly in the presence 

of imbalanced datasets.  

The performance comparison model with 

different loss functions is illustrated in Fig.1 

 

 

 

 

Table 1. Performance Metrics of LiVeT-UNet 

model with modified models. 

Metries LiVeT-

UNet model 

LiVeT-UNet 

model 

With Focal 

loss 

LiVeT-UNet 

model 

With Focal-

Tversky loss 

Train Loss 0.0705 0.06794 0.1181 

Valid Loss 0.02467 0.14535 0.2372 

Valid Dice 0.78214 0.77675 0.7820 

Valid 

Jaccard 

0.71328 0.71341 0.7211 

Best Dice 07853 0.79954 0.7910 

Best 

Jaccard 

0.7310 0.73653 0.7310 

Best 

Epoch 

29 23 28 

  

 
Fig1. Performance comparison for models. 

 

 
Fig2. Training and validation loss curves for 

models. 
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Fig 3. Variant best Dice and Jaccard scores for 

models. 

 

 

 
 
Fig 4. Variant best Dice and Jaccard scores for 

models. 
 

3.3 DISCUSSION 

Table (1) compares the LeViT-UNet model's 

performance using three different training 

configurations: the baseline, a model trained 

with Focal Loss, and one trained with Focal-

Tversky Loss. We evaluated each based on their 

training and validation losses, segmentation 

accuracy (using Dice and Jaccard indices), and 

the epoch at which they performed best. A clear 

pattern emerges from the data: each loss 

function uniquely shapes how the model 

converges and generalizes. The baseline model 

set a training loss benchmark at 0.0705. 

Switching to Focal Loss yielded a slight but 

meaningful improvement, driving the training 

loss down to 0.0679. This lower figure suggests 

the model converged faster, likely because 

Focal Loss compels the network to focus on 

hard-to-classify pixels. In a interesting turn, the 

Focal-Tversky Loss produced a significantly 

higher training loss of 0.1181. We can interpret 

this not as a failure, but as a consequence of its 

design; by penalizing false negatives more 

severely, it struggles more during training a 

trade-off that is particularly valuable for 

segmenting small structures in imbalanced 

medical images. When we look at validation 

loss, the story shifts. The baseline model 

generalizes most stably, achieving the lowest 

validation loss of 0.0246. The other two models, 

trained with Focal Loss (0.1453) and Focal-

Tversky Loss (0.2372), show higher validation 

losses. This is the expected downside of their 

increased sensitivity to minority classes and 

harder examples. Crucially, despite this higher 

loss, both models maintained competitive 

segmentation accuracy, highlighting a 

fundamental trade-off between stable 

generalization and class sensitivity. The 

accuracy metrics themselves tell a nuanced 

story. The baseline achieved a Dice score of 

0.7821 and a Jaccard of 0.7133. The Focal Loss 

variant had a slightly lower Dice (0.7768) but a 

virtually identical Jaccard (0.7134). Most 

notably, the Focal-Tversky model matched the 

baseline's Dice (0.7820) while delivering the 

highest Jaccard index of 0.7211. This points to 

its superior ability in precisely delineating 

boundaries and achieving better overlap. Where 

these models truly diverge is in their 

convergence timelines. The Focal Loss model 

peaked early, achieving its best Dice of 0.7995 

at epoch 23. The Focal-Tversky model, in 

contrast, reached a Dice of 0.7910 at a later 

epoch 28, hinting at a slower but more stable 

optimization process. The baseline confirmed 

this trend by converging last, at epoch 29, with 

a Dice of 0.7853. This sequence confirms that 

both advanced loss functions enhance 

performance compared to the base 

configuration. So, what do we take from this? 

Focal Loss acts as an accelerator, speeding up 

convergence and boosting early performance by 
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targeting difficult samples. Focal-Tversky Loss, 

however, plays a longer game, forging a better 

balance between sensitivity and specificity that 

results in more robust segmentation on tricky, 

imbalanced data. For medical tasks where 

precision on small structures is paramount, 

pairing LeViT-UNet with Focal-Tversky Loss 

appears to be a reliable strategy. Figure 

Analysis Figure 1 uses a bar chart to visually 

summarize the core trade-off. It places the Train 

Loss, Valid Loss, Valid Dice, and Valid Jaccard 

for each model side-by-side, making the 

compromise between convergence speed and 

final accuracy immediately apparent. Figure 2 

tracks the loss trends over time. All models 

decrease their training loss steadily, which is a 

good sign. However, the baseline and Focal 

Loss models converge more smoothly and 

quickly. The Focal-Tversky model's higher 

validation loss suggests it might be overfitting 

slightly or simply taking longer to adapt to the 

class imbalance. In this view, the Focal Loss 

variant seems to have the most balanced 

behavior. Figure 3 isolates the peak 

performance. It clearly shows the Focal Loss 

model securing the highest Best Dice (0.7995), 

while the Focal-Tversky model claims the top 

Jaccard (0.7211). This visually reinforces the 

conclusion that Focal-Tversky excels at overlap 

precision. Figure 4 brings it all together on a 

sample abdominal CT scan. The visual evidence 

supports the quantitative data: Focal-Tversky 

loss delivers the most balanced and accurate 

segmentation. Focal Loss improves on small 

classes, but Focal-Tversky provides a more 

comprehensive upgrade. The baseline, while 

stable, lags in final accuracy. 

4. CONCLUSIONS 

This evaluation leads us to several key 

conclusions. The choice of loss function is not a 

minor detail; it fundamentally directs the 

LeViT-UNet model's convergence and its 

ultimate segmentation accuracy on imbalanced 

medical images. Focal Loss serves as a 

powerful tool for stabilizing training and 

speeding up convergence. Focal-Tversky Loss, 

however, provides a more nuanced control, 

balancing sensitivity and specificity to enhance 

the segmentation of small, critical regions. The 

LeViT-UNet architecture itself proves to be a 

potent framework, successfully marrying a 

transformer's attention mechanism with a 

CNN's efficiency. This makes it well-suited for 

medical imaging, where both precision and 

computational practicality are non-negotiable. 

That said, our results also confirm that the 

model's performance is still constrained by 

classic challenges like dataset imbalance and 

limited diversity, which can hamper 

generalization. Looking forward, the path 

seems to point toward hybrid loss functions or 

adaptive weighting schemes that could offer 

even greater robustness. Exploring transfer 

learning and multimodal data fusion would also 

be logical next steps to improve performance 

across the wide spectrum of medical imaging 

modalities. In summary, this work solidifies 

LeViT-UNet as a highly promising and efficient 

solution for tackling the complex demands of 

modern medical image segmentation. 
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