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ABSTRACT

Medical image segmentation is a fundamental task for accurate automated diagnosis, treatment planning,
and clinical decision-making. This study presents a comparative evaluation of the LeViT-UNet model a
convolutional encoder decoder network enhanced with transformer blocks on imbalanced computed
tomography (CT) datasets. Two loss functions were investigated: the traditional Focal Loss and the
composite Focal-Tversky Loss. The model was trained and validated on annotated CT slices exhibiting
high class imbalance to assess segmentation accuracy and convergence stability. Experimental results
reveal that training with Focal Loss enables faster convergence and achieves higher Dice and Jaccard
scores during early epochs by emphasizing challenging samples. In contrast, the Focal-Tversky Loss
achieves a better trade-off between sensitivity and specificity, leading to improved stability and
generalization across imbalanced data. These findings underscore the importance of selecting task-
specific loss functions for medical image segmentation and demonstrate that integrating LeViT-UNet
with Focal-Tversky Loss provides a robust and consistent framework suitable for clinical applications
demanding high precision.
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1. INTRODUCTION

Medical The ability to precisely delineate
anatomical structures and pathological regions
from medical images is a cornerstone of
contemporary clinical practice. This process of
medical image segmentation provides the
foundational data for accurate diagnosis,
tailored treatment planning, and informed
clinical decision-making [1]. Despite its
importance, achieving robust segmentation
remains a formidable challenge, particularly
when dealing with imbalanced datasets where
clinically critical structures—such as small
tumors or fine vessels—occupy only a minute
portion of the total image area. This imbalance
often causes deep learning models to develop a
bias toward the dominant class, ultimately
compromising their utility for precise analysis
[2]. Addressing this vulnerability has become a
central focus in medical Al, driving innovation
in both model architectures and training
paradigms [3]. In response, the field has
witnessed a surge of advanced neural network
designs. Among the most promising are hybrid
models like LeViT-UNet, which integrate
lightweight transformer modules into the classic
U-Net architecture [4]. By combining the
convolutional neural network's (CNN)
proficiency at extracting local features with the
transformer's strength in modeling long-range
dependencies, these models capture a richer
spectrum of contextual information. This
synergy has proven especially valuable for
complex segmentation tasks, with LeViT-UNet
itself demonstrating notable efficacy on
imbalanced datasets [3, 4]. However, even the
most sophisticated architecture is only as
effective as the function used to train it. The

choice of loss function is therefore paramount.
Traditional loss functions, including those
based on the Dice and Jaccard indices, often fall
short in imbalanced settings because they treat
all pixels equally, allowing the gradient from
the vast background to overwhelm the signal
from small foreground structures [2]. This
limitation has spurred the development of more
nuanced alternatives. Loss functions such as
Focal Loss and Focal-Tversky Loss are
specifically engineered to counteract class
imbalance by dynamically adjusting the
learning focus. They apply greater weight to
hard-to-classify examples and, in the case of
Focal-Tversky, can strategically penalize false
negatives, thereby enhancing a model's
sensitivity and specificity for minority classes
[1, 2]. Their potential to significantly improve
segmentation performance in challenging
contexts is now increasingly recognized. While
LeViT-UNet presents a powerful architecture
and these advanced loss functions offer
compelling theoretical benefits, a clear,
empirical evaluation of their combined efficacy
is needed. How does the integration of Focal
Loss or Focal-Tversky Loss specifically
influence the convergence behavior and final
segmentation accuracy of LeViT-UNet on
imbalanced medical data? This study seeks to
answer that question. We present a
comprehensive performance evaluation of the
LeViT-UNet model applied to imbalanced CT
image segmentation, directly comparing the
impacts of the Focal and Focal-Tversky loss
functions. Through this analysis, we aim to
identify optimal training configurations and
provide insights that contribute to the
development of more reliable and robust
automated diagnostic systems.
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2. MATERIALS AND METHODS
2.1. Model Selection

This paper employs the LeViT-UNet [5] hybrid
model as the foundation due to its capability to
combine the traditional UNet architecture with
transformer blocks effectively. This integration
enables the model to capture global contextual
features through transformers, while retaining
high-resolution spatial information from UNet.
Additionally, the model's skip connections
facilitate more precise segmentation by fusing
low-level features with the global context,
which is particularly advantageous for medical
image segmentation tasks. To enhance model
performance, the focal loss function is utilized
because it counteracts class imbalance by
reducing the loss weight assigned to easily
classified samples and concentrating more on
difficult or misclassified instances. This
strategy significantly improves segmentation
quality, especially for small or
underrepresented anatomical structures in
medical images.

2.2. Dataset

Two datasets his study leverages two publicly
available medical imaging datasets to evaluate
the model's performance under class imbalance.
The first is the Synapse multi-organ
segmentation dataset [6], which comprises 30
abdominal CT scans. From these scans, a total
of 3,779 axial contrast-enhanced clinical CT
images were extracted for analysis. The dataset
is partitioned into 18 cases for training and 12
for wvalidation. Its annotation covers eight
distinct abdominal organs: the aorta,
gallbladder, spleen, left kidney, right kidney,
liver, pancreas, and stomach, providing a
benchmark for multi-class organ segmentation.
The second dataset is the Automated Cardiac
Diagnostic Challenge (ACDC) [6], collected
from cine MRIs of 150 patients. It includes 100
fully annotated volumes, which we divided into
80 training and 20 validation samples, with an

additional 50 volumes reserved for evaluation.
This dataset presents a distinct and challenging
multi-label segmentation scenario. A significant
challenge arises from the pronounced
anatomical overlap between the stomach, large
intestine, and small intestine. This overlap not
only creates a natural class imbalance but also
demands that the model learn to make fine-
grained distinctions between multiple adjacent
target regions and the background within the
same image area.

2.3 Loss Functions

Loss functions have a critical role in optimizing
deep learning models and influencing their
convergence during training. They are
particularly important in addressing challenges
such as class imbalance in training datasets,
which forms the core of this study [7]. Among
many loss functions designed to tackle these
issues, the Focal Loss [8] stands out for its
ability to focus training on hard-to-classify
samples by down-weighting easy examples.
Meanwhile, the hybrid Focal-Tversky Loss [2].
combines the advantages of Focal Loss with the
Tversky loss, providing enhanced flexibility to
balance false positives and false negatives,
which is essential for segmenting imbalanced
medical images.

Focal loss: is a form of binary cross-entropy
loss that addresses the class imbalance problem
with standard cross-entropy loss by reducing
the contribution of positive samples [8].

(pt) = -o(1 - pt) log (pt)

where, y > 0 and when y = 1 Focal Loss works
like Cross-Entropy loss function, and o ranges
from [0,1] that can be treated as a
hyperparameter.

Focal-Tversky loss: this function is inspired by
the Focal loss adaptation of the cross-
entropy loss, the Focal Tversky loss adapts
the Tversky loss by applying a focal
parameter.
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c-1

Lgr = Z(Lg)l/y
c=0

where L& represents the Tversky loss of class c.
Focal Tversky loss is identical to Tversky
loss for y=1.

[1,3] for y that makes the model focus on
misclassified pixels. However, when the
training is close to convergence Focal Tversky
loss becomes suppressed and prevents the
model from pushing for complete convergence.

3. RESULTS AND DISCUSSION
3.1 Implementation Details

The experiments are conducted using Python
3.7.10, PyTorch 1.9.1, and Linux 5.15.154+-
x86_64. The optimizer used is Adam, which has
a learning rate of 2e-3. All models are trained
on a Tesla P100-PCIE GPU with 16GB
memory. The input resolution of images is
224x224, with a batch size of 8 for training and
16 for validation. The models used transformer
backbones pre-trained on ImageNet-1k, and
training is conducted for 30 epochs on the
Synapse and ACDC datasets.

3.2 Results

To emphasize the pivotal role of loss functions
in enhancing medical image segmentation
tasks, two scenarios were assessed: one
employing the focal loss function, and the other
operating with focal-Tversky loss. The results
of this comparison, summarized in Table (1),
demonstrate the segmentation accuracy and
model robustness, particularly in the presence
of imbalanced datasets.

The performance comparison model with
different loss functions is illustrated in Fig.1

Table 1. Performance Metrics of LiVeT-UNet
model with modified models.

Metries LiVeT- LiVeT-UNet | LiVeT-UNet
UNet model model model
With Focal With Focal-
loss Tversky loss
Train Loss 0.0705 0.06794 0.1181
Valid Loss 0.02467 0.14535 0.2372
Valid Dice 0.78214 0.77675 0.7820
Valid 0.71328 0.71341 0.7211
Jaccard
Best Dice 07853 0.79954 0.7910
Best 0.7310 0.73653 0.7310
Jaccard
Best 29 23 28
Epoch
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B Tain Loss
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Figl. Performance comparison for models.
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3.3 DISCUSSION

Table (1) compares the LeViT-UNet model's
performance using three different training
configurations: the baseline, a model trained
with Focal Loss, and one trained with Focal-
Tversky Loss. We evaluated each based on their
training and validation losses, segmentation
accuracy (using Dice and Jaccard indices), and
the epoch at which they performed best. A clear
pattern emerges from the data: each loss
function uniquely shapes how the model
converges and generalizes. The baseline model
set a training loss benchmark at 0.0705.
Switching to Focal Loss yielded a slight but
meaningful improvement, driving the training
loss down to 0.0679. This lower figure suggests

the model converged faster, likely because
Focal Loss compels the network to focus on
hard-to-classify pixels. In a interesting turn, the
Focal-Tversky Loss produced a significantly
higher training loss of 0.1181. We can interpret
this not as a failure, but as a consequence of its
design; by penalizing false negatives more
severely, it struggles more during training a
trade-off that is particularly valuable for
segmenting small structures in imbalanced
medical images. When we look at validation
loss, the story shifts. The baseline model
generalizes most stably, achieving the lowest
validation loss 0of 0.0246. The other two models,
trained with Focal Loss (0.1453) and Focal-
Tversky Loss (0.2372), show higher validation
losses. This is the expected downside of their
increased sensitivity to minority classes and
harder examples. Crucially, despite this higher
loss, both models maintained competitive
segmentation  accuracy, highlighting a
fundamental  trade-off  between  stable
generalization and class sensitivity. The
accuracy metrics themselves tell a nuanced
story. The baseline achieved a Dice score of
0.7821 and a Jaccard of 0.7133. The Focal Loss
variant had a slightly lower Dice (0.7768) but a
virtually identical Jaccard (0.7134). Most
notably, the Focal-Tversky model matched the
baseline's Dice (0.7820) while delivering the
highest Jaccard index of 0.7211. This points to
its superior ability in precisely delineating
boundaries and achieving better overlap. Where
these models truly diverge is in their
convergence timelines. The Focal Loss model
peaked early, achieving its best Dice of 0.7995
at epoch 23. The Focal-Tversky model, in
contrast, reached a Dice of 0.7910 at a later
epoch 28, hinting at a slower but more stable
optimization process. The baseline confirmed
this trend by converging last, at epoch 29, with
a Dice of 0.7853. This sequence confirms that
both advanced loss functions enhance
performance  compared to the base
configuration. So, what do we take from this?
Focal Loss acts as an accelerator, speeding up
convergence and boosting early performance by
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targeting difficult samples. Focal-Tversky Loss,
however, plays a longer game, forging a better
balance between sensitivity and specificity that
results in more robust segmentation on tricky,
imbalanced data. For medical tasks where
precision on small structures is paramount,
pairing LeViT-UNet with Focal-Tversky Loss
appears to be a reliable strategy. Figure
Analysis Figure 1 uses a bar chart to visually
summarize the core trade-off. It places the Train
Loss, Valid Loss, Valid Dice, and Valid Jaccard
for each model side-by-side, making the
compromise between convergence speed and
final accuracy immediately apparent. Figure 2
tracks the loss trends over time. All models
decrease their training loss steadily, which is a
good sign. However, the baseline and Focal
Loss models converge more smoothly and
quickly. The Focal-Tversky model's higher
validation loss suggests it might be overfitting
slightly or simply taking longer to adapt to the
class imbalance. In this view, the Focal Loss
variant seems to have the most balanced
behavior. Figure 3 isolates the peak
performance. It clearly shows the Focal Loss
model securing the highest Best Dice (0.7995),
while the Focal-Tversky model claims the top
Jaccard (0.7211). This visually reinforces the
conclusion that Focal-Tversky excels at overlap
precision. Figure 4 brings it all together on a
sample abdominal CT scan. The visual evidence
supports the quantitative data: Focal-Tversky
loss delivers the most balanced and accurate
segmentation. Focal Loss improves on small
classes, but Focal-Tversky provides a more
comprehensive upgrade. The baseline, while
stable, lags in final accuracy.

4. CONCLUSIONS

This evaluation leads us to several key
conclusions. The choice of loss function is not a
minor detail; it fundamentally directs the
LeViT-UNet model's convergence and its
ultimate segmentation accuracy on imbalanced
medical images. Focal Loss serves as a
powerful tool for stabilizing training and
speeding up convergence. Focal-Tversky Loss,

however, provides a more nuanced control,
balancing sensitivity and specificity to enhance
the segmentation of small, critical regions. The
LeViT-UNet architecture itself proves to be a
potent framework, successfully marrying a
transformer's attention mechanism with a
CNN's efficiency. This makes it well-suited for
medical imaging, where both precision and
computational practicality are non-negotiable.
That said, our results also confirm that the
model's performance is still constrained by
classic challenges like dataset imbalance and
limited diversity, which can  hamper
generalization. Looking forward, the path
seems to point toward hybrid loss functions or
adaptive weighting schemes that could offer
even greater robustness. Exploring transfer
learning and multimodal data fusion would also
be logical next steps to improve performance
across the wide spectrum of medical imaging
modalities. In summary, this work solidifies
LeViT-UNet as a highly promising and efficient
solution for tackling the complex demands of
modern medical image segmentation.
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