

 J Technol Res. 2026;4:880-897. https://jtr.cit.edu.ly

“Articles published in J Technol Res are licensed under a Creative Commons

Attribution-NonCommercial 4.0 International License.”

Journal of Technology Research (JTR)

Volume 4, Special Issue, (2026), pp 880-897, ISSN 3005-639X

The 7th Conference of Engineering Sciences and Technology

(CEST-2025)

Cross-Platform Performance Prediction of Software Applications

Using Machine Learning Models for Optimized Resource

Utilization

Abraheem Mohammed Alsubayhay *1 , Mohamed A. E. Abdalla 2 , Geber Khalifa Gaber 3 ,

Faitouri A Aboaoja4
1 Dept. of Computer Science, Faculty of Arts and Sciences, University of Benghazi, Solouq, Libya,
2 Dept. of Software Engineering, Faculty of Information Technology University of Benghazi, Benghazi, Libya,
3 Dept of Computer technologies, Higher Institute to science and technology, suluq, Libya,
4 Dept. of Computer Science, Faculty of Sciences, University of Derna, Derna, Libya,

*Corresponding author email: abraheem.alsubayhay@uob.edu.ly.

Received: 16-10-2025 | Accepted: 20-11-2025 | Available online: 03-01-2026| DOI:10.26629/jtr.2026.**

ABSTRACT

Efficient cross-platform performance prediction and resource optimization are critical for deploying

software applications in heterogeneous computing environments. Existing models often struggle to

capture complex software–hardware dependencies and evolving workload dynamics, resulting in limited

prediction accuracy and poor adaptability. To overcome these limitations, this study introduces a unified

intelligent framework that seamlessly integrates Platform-Aware Graph Attention (PAGA), Cross-

Platform Temporal Memory (CPTM), and NSGA-II optimization. This tri-layer integration uniquely

combines structural dependency learning, temporal sequence understanding, and multi-objective

optimization to deliver adaptive and generalizable performance prediction across diverse hardware

platforms. The model is implemented in Python using PyTorch for deep learning components and

NumPy/Matplotlib for analysis. Experiments are conducted on a cloud performance dataset (CPU,

memory, network, energy, execution time, instruction count) from Kaggle. The proposed framework

achieves high prediction accuracy with MAE = 0.087, RMSE = 0.132, and R² = 0.97, marking a 20–

25% improvement over baseline models. In the optimization stage, NSGA-II achieves 26.8% execution

time reduction, 23.5% energy saving, and 17.4% memory utilization improvement. These results

highlight the novelty and effectiveness of the integrated PAGA–CPTM–NSGA-II architecture,

demonstrating its potential for scalable, resource-efficient, and cross-platform software performance

management in real-world deployments.

Keywords: Cross-Platform Performance Prediction, Energy-Efficient Computing, Meta-Learning, Resource

Utilization Optimization, Software Performance Modelling

المنصات باستخدام نماذج التعلم الآلي بأداء تطبيقات البرمجيات عبر التنبؤ
 لتحقيق استخدام أمثل للموارد

 4فيتوري عوض بوعوجة ، 3جبر خليفة جبر، 2محمدعبد الله المنفي، 1إبراهيم محمد سليمان الصبيحي
 ليبيا ، سلوق ، جامعة بنغازي ، كلية الآداب والعلوم، قسم علوم الحاسوب 1

ا ليبي، بنغازي ، جامعة بنغازي ، كلية تقنية المعلومات، هندسة البرمجيات قسم 2

mailto:abraheem.alsubayhay@uob.edu.ly

 Alsubayhay et al 881

 J Technol Res. 2026;4:880-897. https://jtr.cit.edu.ly

 ليبيا ، سلوق ، المعهد العالي للعلوم والتقنية ، قسم تقنيات الحاسوب 3
 ليبيا ، درنة، جامعة درنة، كلية العلوم، قسم علوم الحاسوب 4

 البحــــــــــــــــــث ملخــــــــــــــــص
التنبؤ بكفاءة الأداء عبر المنصااات المتنوعة وتحساايم الموارد نعدان مم العوامح الحاساامة لنياار تلبيقات البرمجيات في بيسات الحوساا ة

. Random Forest ،LSTM ،CNN-LSTMمثح: اللرق الحالية بما في ذلك نماذج التعلم الآلي التقليدنةتعتبر غير المتجانسة.
غالً ا ما تفياااااااح في التحقت مم التفاعقت المعقدة بيم البرمجيات والأجهاة وداناميكيات علء العمح الامنية، مما اؤدي إلل الحصاااااااو

اادم ج قاة PAGA–CPTM–NSGA-II علل دقاة تنبؤ غير مثاالياة. لمعاالجاة هايو القيود، نقترذ في هايو الورقاة إجاار عماح جادااد
Platform-Aware Graph Attention (PAGA) منصاات-لنميجة الاعتمادات الهيكلية وج قة الياكرة الامنية العبر (CPTM)

لتحساااااااااااااايم متعادد (NSGA-II) الجينياة غير المههيمناة الثاانياةالترتيال لالتقاا التلور الامني الادانااميكي لمقااايد الأداء، وخوارزمياة
للمكونات العميقة PyTorch مع Python الأهداف لوقت التنفيي، اسااااااااااااات دام الياكرة، واساااااااااااااتهقس اللاقة. اهنفي النموذج باسااااااااااااات دام

 لمعالجة البيانات والتصاااااااااور. تهجربت التجارب علل مجموعة بيانات لمقاايد تداء الحوسااااااااا ة الساااااااااحابية: NumPy/Matplotlibو
CPU . نحقت الإجار المقترذ دقة تنبؤ عالية بمعد خلأ مللت، الياكرة، اليااااا كة، اللاقة، وقت التنفيي، عدد التعليمات (MAE) قدرو

، مما نمثح تحسااااااناً بنساااااا ة تتراوذ بيم 0.97ابلغ (R²) ، ومعامح تحداد0.132قدرو (RMSE) ، وجير متوساااااا مرطع ال لأ0.087
%، 26.8ان فاضاااً في زمم التنفيي بنساا ة NSGA-IIوفي مرحلة التحساايم، نحقت خوارزم . % مقارنة بالنماذج الأساااسااية25% و20

. تهظهر هيو النتائ قدرة الإجار علل التنبؤ .%17.4%، وتحسااناً في اساات دام الياكرة بنساا ة 23.5وتوفيراً في اسااتهقس اللاقة بنساا ة
المنصااااااات غير المتجانسااااااة. توفر اللربقة المقترحة حقً قوبًا عبر resource-aware بكفاءة الأداء وتوجيه نياااااار الموارد بيااااااكح وا

 .وقابقً للتوسع وقابقً للتفسير، مع خلت فرص لل حث المستقبلي في تحسيم البرمجيات في الوقت الحقيقي بيكح تكيفي

الدا بأداء الأنظمة عبر المنصات ة:لالكلمات التعلم فوقي)الميتا ، التنبؤ الكفاءة في استهلاك الطاقة، تعلم(، تحسين - الحوسبة ذات

 .، نمذجة أداء البرمجيات استخدام الموارد

1. INTRODUCTION

The rapid growth of cloud computing and non-

homogeneous hardware has rendered

forecasting software performance in the variety

of platforms extremely complex [1]. Change in

CPU capacity, memory hierarchy, and network

architecture leads to variation in the execution

time, energy consumption and usage of

resources [2]. Conventional rule-based

prediction systems do not represent such

dynamic software-hardware interactions and

therefore fail to give accurate predictions and

waste resources [3], [4]. Dependence on other

modules and temporal variation are additional

complicates of performance analysis as the

workloads change and modules of software

interact with various hardware components [5],

[6]. Machine learning can provide a powerful

answer through learning an irregular

dependence between system behaviour and

workloads [7], [8]. Inter-module dependencies

can be represented by graph-based and temporal

models and the changing performance trends

with time, enhancing the accuracy of prediction

[9], [10]. Furthermore, to make deployment

optimal, one should balance several goals, e.g.,

to minimize the time of execution, the use of

memory, and usage of energy [11]. Multi-

objective optimization algorithms are able to

find effective configurations that optimize

performance and limits overhead [12], [13]. The

 Alsubayhay et al 882

 J Technol Res. 2026;4:880-897. https://jtr.cit.edu.ly

generalization of models to unseen

environments can also be guaranteed through

cross-platform adaptability.

1.1 Research Motivation

The existing models of performance prediction

are not applicable to modern computing

environments because they do not emulate the

dynamic interaction between software and

hardware layers, resulting in a failure to

estimate the execution time and allocate

resources efficiently. This is a weakness that

restricts system optimization and scalability of

the heterogeneous platforms. The practical

significance of this research is to create the

machine learning-based predictive model that

will help accurately predict software

performance in various platforms to allow

optimal use of the resources and could lead to a

higher efficiency of operations in the real-life

setting of the computing process.

1.2 Significance of the Study

This study is important because it deals with

such a severe problem as the necessity of

precise cross-platform performance forecasts in

contemporary computing ecosystems. The

proposed model combines the graph neural

networks and the temporal memory layers to

help to capture the intricate interactions of

software modules and hardware components

across time. Multi-objective optimization is

built into the deployment decisions to have the

effect of balancing the execution time, energy

consumption, and memory usage to result in

efficient resource utilization. The results of this

study can be used to create more sophisticated

and responsive performance prediction models

and help to improve the field of cloud

computing as well as heterogeneous systems

management.

1.3 Problem Statement

The fast evolution of heterogeneous computing

platforms and complex computing workloads

have rendered effective performance prediction

to be a challenging task. The current research

usually uses a set of static benchmarks or

regression-based models, which do not

represent dynamic software-hardware

interactions and changes in execution patterns

over time, resulting in inefficient resource

utilization and suboptimal deployment choices

[14], [15]. This study manages to address them

by introducing a unified machine learning

framework that incorporates both graph-based

modelling and temporal memory networks,

along with cross-platform adaptation and multi-

objective optimization. The strategy allows

specific forecasting of the execution time,

energy, and memory consumption, which will

guarantee effective resource management on a

variety of computing systems.

1.4 Key Contributions

• A new deep learning-based hybrid

framework, PAGA–CPTM–NSGA-II,

is proposed for accurate cross-platform

performance prediction and

optimization of software applications.

• Introduces a PAGA Layer to effectively

capture complex software–hardware

interaction patterns and spatial

dependencies among computational

nodes.

• Develops a CPTM Layer to model

temporal variations in workload and

resource utilization, enhancing

predictive adaptability across

heterogeneous platforms.

• Employs NSGA-II to optimize

performance metrics such as execution

time, energy consumption, and memory

utilization, yielding Pareto-optimal

deployment solutions.

2. RELATED WORK

Amaris et al. [15] and Pintye et al. [14]

examined machine learning-based mechanisms

of predicting performance and optimizing

resources in a heterogeneous computing

platform. Amaris et al. used analytical modeling

 Alsubayhay et al 883

 J Technol Res. 2026;4:880-897. https://jtr.cit.edu.ly

and Random Forest and Support Vector

Regression to accurately estimate the time of

GPU kernel executions based on performance

metrics of benchmarks with RMSE of 0.21 and

R- squared equal to 0.94. Pintye et al. proposed

a reinforcement learning-based framework of

cloud autoscaling which was trained on the

CPU, memory, and latency measurements of the

public cloud traces and enhanced the utilization

of resources by 18% and minimized the

overhead by 12%. Taken together, these works

demonstrate that hybrid analytical-machine

learning models can enhance accuracy and

efficiency in the context of both GPU and cloud

environments, but it is still difficult to sustain

generalization in the case of a wide range of

workloads.

De Filippo et al. [16] suggested a machine

learning method to estimate the execution time

of the COSMO meteorological simulation

software. Data on historical performance in

simulation and execution logs were used to train

regression and ensemble models in the study.

Random Forest and Gradient Boosting gave

good results, with MAE of 0.34, and RMSE of

0.42. The shortcoming was decreased

adaptability to the invisible hardware layouts

and the complicated patterns of paralleling

execution.

Cordeiro-Costas et al. [17] suggested an NSGA-

II-based hybrid LSTM-MLP prediction model

in building shorthand energy management. It

included hourly occupancy data, temperature

data, and hourly energy consumption data. Deep

learning with evolutionary optimization

resulted in 15 percentage point energy

efficiency. The model had RMSE of 0.126 and

a R 2 of 0.983 and was highly computing power

intensive thus less viable in the low-resource

environment and could not be used in real-time.

Kumar et al. [18] introduced a transfer learning-

based cross-platform performance prediction

model based on machine learning to further

improve generalization. The data set contained

logs of runtime and energy consumptions of

heterogeneous computing platforms. Solutions

like domain adaptation and regression learning

were applied. The model obtained MAE=0.27

and RMSE=,0.33 in unseen platforms though

high variability workloads needed fine tuning.

Rua and Saraiva [19] suggested mass empirical

research that would measure the performance of

mobile applications regarding energy and

runtime and memory efficiency. Statistical

analysis and regression indicated that there were

important power-performance trade-offs. The

model predicted energy with an R 2 of 0.91,

however, the heterogeneity of the devices and

the inconsistency of apps could not be

universalized.

Ford and Zong [20] suggested PortAuthority, a

dynamic program analysis framework that was

proposed as a means of introducing energy

efficiency analysis to cross-platform

development. The research involved the use of

benchmark programs that were run on different

systems in order to compare energy and CPU

efficiency. It used runtime analysis and profile

analysis to profile the patterns of power

consumption. The framework minimized the

average energy consumption by 11 percent, yet,

it lacked predictive power and used nearly

solely the execution-level profiling.

The literature review points out the necessity of

proper performance prediction and optimization

in heterogeneous computing settings.

Forecasting machine learning models and

methods have been used to predict the time

taken by an execution of a GPU kernel, cloud

autoscaling, and simulations of weather

conditions, with a focus on performance and

flexibility. Such multi-objective models as

NSGA-II and transfer learning techniques are

used to increase cross-platform prediction and

empirical studies of energy and run-time help to

maximise software performance and resource

use on various computational platforms.

3. Proposed Spatiotemporal Graph

Attention Network for Cross-Platform

Performance Prediction

 Alsubayhay et al 884

 J Technol Res. 2026;4:880-897. https://jtr.cit.edu.ly

 The proposed approach gives a systematic

model that seeks to predict, optimize, as well as

deploy the software applications efficiently on

heterogeneous computing platforms. It

combines the modelling based on data,

spatiotemporal learning about graphs and multi-

objective optimization to describe the software-

hardware dependence and dynamic workload

behaviours. This is initiated by data collection

 and pre-processing, then structure of a graph

constituting interactions between software

modules and hardware components. Learning

of space and time PAGA and CPTM. Lastly, the

multi-metric prediction, optimization, and

deployment can be used to guarantee efficient

use of resources across platforms. Fig. 1

represents the entire workflow.

Fig 1. Workflow of the Proposed Model

3.1 Data Collection

The study uses the Kaggle Cloud Computing

Performance Metrics[21], data that records

heterogeneous behaviour of software

applications in the platform. The data are CPU

utilization, memory usage and network traffic,

power consumption, execution time, and the

number of executed instructions, workload

descriptors and platform metadata. These

measures are the interplay of software modules

and hardware resources in diverse workload and

configurations. Temporal modelling of

performance dynamics can be achieved by use

of time-stamped records. Such multi-

dimensional data can then be collected, which is

the basis of building software-hardware graphs,

deriving useful node and edge features, and

training higher-level spatiotemporal models to

be precise in predicting cross-platform

performance. Table 1 provides a sample of such

data with some of the most important metrics

and task descriptions.

Table.1 Dataset Description

CPU

Usage

Memory

Usage

Network

Traffic

Power

Consumption

Num Executed

Instructions

Execution

Time

Energy

Efficiency

54.88 78.95 164.78 287.81 7527 69.35 0.55

71.52 29.90 184.23 362.27 5348 41.40 0.35

55.82 92.71 203.67 231.47 5483 24.60 0.80

54.49 88.10 184.23 195.64 5876 16.46 0.53

42.37 72.42 184.23 359.45 3361 55.31 0.35

3.2 Data Preprocessing

Pre-processing attempts to convert raw cloud

computing performance data into a clean and

consistent and structured format that is suitable

to spatiotemporal modelling. It supports the

 Alsubayhay et al 885

 J Technol Res. 2026;4:880-897. https://jtr.cit.edu.ly

missing values, outliers, as well as

heterogeneous measures, and derives

significant software and hardware features.

Temporal alignment can guarantee the

performance dynamics in sequences, which can

be predictable precisely cross-platform by

sophisticated GNN and temporal model.

3.2.1 Data Cleaning

Data cleaning is used to solve problems such as

missing values, outliers, and inconsistent time.

The mean or the median of the corresponding

column is used to impute numeric missing

values (CPU, memory, execution time).

Categorical values (type of task, status) are

filled with a mode. Z-score or interquartile

range (IQR) is used to identify outliers that are

either capped or eliminated. The consistency of

timestamps is achieved by putting all records

into a unified data time form and sorting them

in order. Adequate cleaning helps in avoiding

model bias, providing stable training and also

preserving consistency of cross platform

performance patterns in a variety of workloads

and hardware settings.

3.2.2 Normalization

Normalization is used to convert heterogenous

numerical measurements to a shared scale so

that large-valued features will not prevail and to

enhance convergence of the model. The aspect

of CPU utilization, memory, execution time and

energy efficiency are very important to make

sure that features are balanced when learning

through spatial and temporal encoders.

𝑥′ =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
 (1)

In eqn. (1), 𝑥is the original feature value,

𝑥𝑚𝑖𝑛and 𝑥𝑚𝑎𝑥are column-wise minimum and

maximum, and 𝑥′is the normalized value

between 0 and 1.

3.2.3 Feature Extraction

The feature extraction transforms raw metrics

into meaningful ones to the model. Hardware

load is a parameter that is used to denote the

consumption of resources in terms of CPU and

memory usage. Software workload is used to

measure the execution time and number of

instructions and characterizes application

behaviour. The node features of the Spatial

Encoder (GAT) are encoded as platform

metadata (type of task, its priority, and VM ID).

These features extracted enable the model to

acquire how the various software tasks relate to

hardware usage patterns. Proper feature

engineering: This guarantees that software

behaviour and platform characteristics are both

represented so that cross platform performance

can be predicted correctly.

3.2.4 Temporal Alignment

Temporal alignment groups the data into series

in order to model time behaviour. The

timestamps are utilized to build ordered

sequences that have set window sizes that can

be used with CPTM Layer. The snapshots of

each sequence contain a set of performance

snapshots with time dependencies. Just to have

continuity, missing times are interpolated or

forward-filled. This process enables the

temporal encoder to acquire the dynamics of

performance measures with different workloads

and hardware settings. Correct alignment

guarantees the sequential patterns are

successfully picked to enhance the capability of

the model in forecasting future dynamics of

cross-platform performance.

3.3 Cross-Platform Graph Modelling

This step is an input to a software-hardware

graph, which is the representation of the

interactions between software modules and

hardware components. Nodes are associated

with software functions or modules and

hardware components like CPU, memory and

network interfaces. Dependency relationships

or shared resource usage is represented by edges

which show how software tasks are related with

hardware resources. The features of every node

correspond to workload (e.g., number of

instructions executed, batch size), hardware

usage (CPU, memory, network I/O

percentages), and platform-specific (server,

 Alsubayhay et al 886

 J Technol Res. 2026;4:880-897. https://jtr.cit.edu.ly

cores, memory capacity) features. This directed

graph enables the spatial encoder (GAT) to

learn meaningful node representations as well

as learn platform relational dependencies. The

adjacency A is a mathematically expressed

adjacency graph.

𝐴𝑖𝑗 =

{
1, if 𝑖 and 𝑗 share a dependency or resource

0, otherwise
 (2)

In eqn. (2), 𝐴𝑖𝑗denotes whether nodes 𝑖and 𝑗are

connected. A value of 1 indicates a dependency

or resource-sharing relationship, while 0

represents no connection, defining the graph

structure for GAT learning.

3.4 Spatiotemporal Feature Learning

The Spatiotemporal Feature Learning learns

both the spatial and temporal information in

cloud computing performance data. The spatial

component describes the relations between

software modules and hardware resources

whereas the temporal component acquires

patterns within a heterogeneous platform across

time. They can produce enriched embeddings

together which allow predicting cross platform

performance with correct accuracy across

various measures.

Fig 2. Spatiotemporal Architecture

Fig. 2. shows the workflow of the PAGA-

CPTM-NSGA-II model developed to predict

and optimize cross-platform performance. It

starts with the performance input data that goes

through a Convolutional (Conv) Layer to

identify low-level spatial patterns. The Spatial

Encoding Block has a Graph Attention Layer,

which represents inter-feature interactions, a

Platform-Aware Attention Layer, which uses

hardware-specific context, and a Graph

Aggregation Layer, which consolidates the

representations of nodes. It encodes time

dependence data with the help of Temporal

Attention Layer and a Cross-Platform Temporal

Memory (CPTM) module, which encodes both

sequential and cross platform dynamics, and

finally performs Temporal Aggregation to

summarize the data. The results are then

presented into the Fully Connected (FC) Layer

and Layer Normalization to refine the feature,

and finally the Prediction Layer produces the

best performance measures.

 Alsubayhay et al 887

 J Technol Res. 2026;4:880-897. https://jtr.cit.edu.ly

3.4.1 Spatial Encoding with PAGA

The PAGA Layer is a platform interaction

model of software modules and hardware

components in heterogeneous platforms. Every

node denotes either a software or hardware

component and an edge denotes dependence or

resource. The features of the nodes encompass

workload metrics (CPU, memory, execution

time), hardware utilization and platform

metadata. The layer calculates attention

coefficients to weigh neighbour influence and

the use of platform specific information, and

outputs spatial embeddings which formulate

important dependencies of cross platform

performance prediction, as represented in (3)

ℎ𝑖
(𝑙)

= 𝑊(𝑙)𝑥𝑖 (3)

This transforms the raw input features 𝑥𝑖of node

𝑖into a learnable embedding ℎ𝑖
(𝑙)

at layer 𝑙. The

weight matrix 𝑊(𝑙)is learned during training,

enabling the model to capture complex

interactions between workload metrics and

hardware usage.

𝛼𝑖𝑗 =
exp⁡(LeakyReLU(𝑎𝑇[ℎ𝑖∥ℎ𝑗∥𝑃𝑖∥𝑃𝑗]))

∑ exp𝑘∈𝒩(𝑖) ⁡(LeakyReLU(𝑎𝑇[ℎ𝑖∥ℎ𝑘∥𝑃𝑖∥𝑃𝑘]))
 (4)

In eqn. (4), attention coefficient 𝛼𝑖𝑗measures

the importance of neighbor 𝑗for node 𝑖. Here,

ℎ𝑖and ℎ𝑗are node embeddings, 𝑃𝑖and 𝑃𝑗are

platform metadata, 𝒩(𝑖)represents the

neighbors of 𝑖, and LeakyReLU adds non-

linearity. The softmax ensures normalization

across neighbours., as represented in (5).

ℎ𝑖
′ = 𝜎(∑ 𝛼𝑖𝑗ℎ𝑗

𝑗∈𝒩(𝑖)
) (5)

The updated embedding ℎ𝑖
′aggregates the

neighbor embeddings ℎ𝑗weighted by attention

𝛼𝑖𝑗. The activation function 𝜎(e.g., ReLU)

introduces non-linearity. The step captures

platform conscious spatial dependencies, in a

way that yields enhanced node representations

to the downstream cross-platform prediction of

performance tasks.

3.4.2 Temporal Encoding with Cross-Platform

Temporal Memory

The CPTM Layer measures the time dynamics

of performance of software applications on

heterogeneous platforms. It simulates the

effects of executions in the past, changes in

work load and the use of hardware on future

performance. The historical states of each node

are stored in a temporal memory, which is

interacting with time-stamped streams of

software and hardware metrics. This allows the

network to develop long-term dependencies and

platform-specific time-dependent patterns that

can be used to predict the cross-platform

performance accurately.

𝑚𝑖
(𝑡)

= 𝑓memory(ℎ𝑖
(𝑡−1)

, 𝑥𝑖
(𝑡)
) (6)

In eqn. (6) 𝑚𝑖
(𝑡)

combines the previous node

embedding ℎ𝑖
(𝑡−1)

with the current input features

𝑥𝑖
(𝑡)

using a learnable function 𝑓memory. This

enables the model to remember the important

past experiences besides incorporating the new

observational ones.

𝛽𝑖𝑗
(𝑡)

=
exp⁡(LeakyReLU(𝑏𝑇[𝑚𝑖

(𝑡)
∥𝑚𝑗

(𝑡)
∥𝑃𝑖∥𝑃𝑗]))

∑ exp𝑘∈𝒩(𝑖) ⁡(LeakyReLU(𝑏𝑇[𝑚
𝑖
(𝑡)
∥𝑚𝑘

(𝑡)
∥𝑃𝑖∥𝑃𝑘]))

(7)

In eqn. (7) 𝛽𝑖𝑗
(𝑡)

weighs the influence of neighbor

𝑗on node 𝑖at time 𝑡. Here, 𝑚𝑖
(𝑡)

and 𝑚𝑗
(𝑡)

are

temporal memories, 𝑃𝑖and 𝑃𝑗are platform

metadata, and 𝒩(𝑖)represents neighbors. The

SoftMax normalization ensures that there is the

right allocation of attention among the

neighbours.

ℎ𝑖
(𝑡)′

= 𝜎(∑ 𝛽𝑖𝑗
(𝑡)
𝑚𝑗

(𝑡)

𝑗∈𝒩(𝑖)
)

In eqn. (8) ℎ𝑖
(𝑡)′

aggregates neighbor memories

weighted by attention 𝛽𝑖𝑗
(𝑡)

. The activation

𝜎introduces non-linearity, allowing the model

to capture long-term temporal dependencies and

platform-aware dynamics, which are crucial for

cross-platform performance prediction.

3.5 Cross-Modal Embedding Integration

 Alsubayhay et al 888

 J Technol Res. 2026;4:880-897. https://jtr.cit.edu.ly

This step combines both spatial embeddings of

PAGA Layer and temporal embeddings of

CPTM Layer. The embeddings represent other

complementary features of software

performance: spatial dependencies between

software modules and hardware components,

and temporal dynamics with time. Other

platform metadata and workload descriptors

(e.g. CPU type, memory capacity, task type) are

appended to the node representation to make it

richer. The composite features are transferred in

fully connected layers to form complete

embeddings that are input to the downstream

prediction task to allow predicting accurate

cross-platform performance.

𝑧𝑖 = 𝜎(𝑊𝑓[ℎ𝑖
PAGA ∥ ℎ𝑖

CPTM ∥ 𝑓𝑖
meta] + 𝑏𝑓)

(9)

In eqn. (9), 𝑧𝑖is the fused embedding for node 𝑖,

ℎ𝑖
PAGAis the spatial embedding, ℎ𝑖

CPTMis the

temporal embedding, 𝑓𝑖
metarepresents platform

and workload descriptors, 𝑊𝑓and 𝑏𝑓are

learnable weights and bias, and 𝜎is a non-linear

activation function (e.g., ReLU).

The combination of spatial, temporal and

platform specific information in the model

provides the benefit of utilizing all three

simultaneously to create complete embeddings

that represent the entire range of cross-platform

performance dynamics.

3.6 Multi-Metric Prediction

Multi-Metric Prediction step is to predict

multiple metrics of software applications at the

same time, not the individual ones. These

metrics are time of execution, CPU

consumption, memory consumption and energy

consumption, which combined together

represent the general performance and resource

use of the application on heterogeneous

platform. The model can learn correlations and

interactions to predict performance aspects by

predicting them together in an improved way,

which improves the accuracy and strength of

predictions.

ℒ = ∑ 𝑤𝑘
𝑀
𝑘=1 ⋅

1

𝑁
∑ (𝑦𝑖

(𝑘)
− 𝑦̂𝑖

(𝑘)
)2

𝑁

𝑖=1
 (10)

In eqn. (10), ℒis the weighted mean squared

error (MSE) loss, 𝑀is the number of metrics,

𝑁is the number of samples, 𝑦𝑖
(𝑘)

is the true value

of metric 𝑘for sample 𝑖, 𝑦̂𝑖
(𝑘)

is the predicted

value, and 𝑤𝑘is the weight assigned to metric

𝑘to balance their contribution.

This weighted MSE loss ensures that all metrics

are learned appropriately, giving priority to

more critical metrics if needed. It allows the

model to simultaneously optimize predictions

across multiple dimensions, capturing complex

trade-offs in performance, resource utilization,

and energy efficiency.

3.7 Cross-Platform Adaptation

The Cross-Platform Adaptation step ensures

that the model can generalize effectively across

different hardware and software configurations.

Software applications often behave differently

depending on CPU types, memory capacities,

network conditions, or virtualization

environments. This step uses platform metadata

embeddings and the spatial-temporal patterns

learned by the model to adapt predictions for

new platforms. Techniques such as domain

adaptation, transfer learning, or fine-tuning on a

small subset of target platform data can be

applied. This ensures the model remains robust

and scalable, providing accurate performance

predictions across heterogeneous platforms

without retraining from scratch.

3.8 Optimization of Cross-Platform

Deployment Using NSGA-II

The optimization objective is formulated as a

fitness function, which combines multiple

predicted metrics into a single measure of

deployment efficiency is represented in (11).

𝑈 = 𝛼 ⋅ execution_time + 𝛽 ⋅ energy+ 𝛾 ⋅

memory_usage (11)

Here, 𝑈 represents the overall utility or cost

function to minimize, while 𝛼, 𝛽, and 𝛾are

weight factors reflecting the relative importance

 Alsubayhay et al 889

 J Technol Res. 2026;4:880-897. https://jtr.cit.edu.ly

of each metric. The performance speed is

represented by the execution time, energy

consumption measures efficiency, and resource

consumption is measured by memory usage.

Algorithm.1 is the optimization of cross-

platform implementation which evolves

populations, applies non-dominated sorting,

and comes up with Pareto-optimal solutions that

balance between the execution, energy, and

memory.

3.9 Cross-Platform Deployment

The Cross-Platform Deployment step is the

implementation of the software modules on the

determined optimal hardware platforms based

on the optimization of NSGA-II. By this phase,

the deployment has ensured that any given

module is allocated to a platform that strikes a

balance on the execution time, CPU and

memory consumption, and power consumption.

This step is able to modify software execution

to fit across server types, cores and memory

capacities, by taking into consideration

platform heterogeneity, and ensure consistency

in performance across environments. Dynamic

adjustments can be made through real-time

monitoring in case actual metrics do not

correspond to the predictions to ensure the

efficient use of resources, minimum energy

consumption, and the stability of execution at

the same time in several platforms.

The prediction of software on heterogeneous

platforms using spatiotemporal embeddings of

PAGA and CPTM are estimated by

Algorithm.2. It combines spatial, temporal and

platform metadata to predict execution metrics

and optimizes the deployment decision with

NSGA-II making sure to efficiently use

resources, consume less energy and achieve

equilibrium between execution among

platforms.

The proposed methodology presents a new

combination of space and time models in the

prediction of software performance on cross-

platforms. The framework incorporates the

PAGA and CPTM layer in order to learn inter-

module dependencies and the temporal patterns

in the long run. Moreover, the combination of

workload and platform metadata provides

greater flexibility in heterogeneous

environments, and prediction is converted into

practical deployment decisions with the help of

the optimization of NSGA-II. Platform-aware

multi-level performance prediction This is a

multi-level approach that guarantees scalable,

efficient and correct performance prediction, as

compared to traditional single-platform, or

purely temporal / spatial models, which offers a

distinctive solution to cross-platform software

optimization.

4. RESULTS AND DISCUSSION

The proposed PAGA-CPTM model managed to

model both space and time dependencies on

heterogeneous computing systems and thus

forecast the performance of different systems in

an accurate and generalized manner. The graph

attention mechanisms as well as the temporal

memory modelling contributed to the

functionality of the system to capture software-

hardware interactions which are complex. The

combination of the learnt embeddings with the

NSGA-II optimization algorithm delivered

equilibrium resourcing plans, exhibiting

enhanced flexibility towards hitherto unnoticed

platforms. Experimental analysis proved that

the suggested method reached a stable

prediction behaviour and a predictable

optimization result, which proved the prospects

of an efficient cross platform implementation

and smart use of resources in a variety of

computing environments.

Table 2. Simulation Parameter

Parameter Value

Time Window 10–50 timestamps per run

Attention Heads 4

 Alsubayhay et al 890

 J Technol Res. 2026;4:880-897. https://jtr.cit.edu.ly

Node Embedding Dim 128

Activation ReLU

Memory Size 128

Temporal Module Transformer

Sequence Length 50

Hidden Layers 2

Hidden Dim 256

Output Nodes 4

Loss Function Weighted MSE

Population Size 50

Generations 100

Crossover Probability 0.8

Mutation Probability 0.1

Optimizer AdamW

Learning Rate 3e-4

Batch Size 64

Epochs 50–150

Table 2 provide brief details of the main

simulation and training parameters that are to be

used to execute the proposed PAGA -CPTM-

NSGA-II framework. It has parameters of the

spatial and temporal encoder layers, attention

mechanisms, memory modules and network

architecture and parameters of the optimization

algorithm, learning process, and training

schedule. These values have been chosen so that

there is stable convergence, effective

representation learning and efficient multi-

objective optimization on heterogeneous

platforms. The structure is designed to allow a

balance between the computation speed and

model performance, which offers a

standardized environment in which the

suggested methodology can be reproducible and

evaluated.

4.1 Platform-Aware Graph Attention Layer

Performance

The PAGA layer proved to have an excellent

capability of capturing software-hardware

interaction and platform specific dependencies

in heterogeneous computing environments. It

prioritizes attention on the relevant nodes,

which in effect identified crucial relationship

between software modules and hardware

composites to make more informative

embeddings to do host prediction. The acquired

spatial representations enhanced the model with

the knowledge of structural dependencies not

through explicit feature engineering but a strong

basis of temporal modelling. Combination with

the CPTM layer also boosted further dynamic

performance tracking demonstrating that the

PAGA layer on its own is an important player

in generalization and cross-platform flexibility,

and thus, a significant player in the accurate and

efficient performance prediction.

Fig 3. Cross-Platform Prediction Error Distribution

Fig 3. shows prediction error distribution in

various platforms based on the Leave-One-

Platform-Out assessment. The individual

platforms are color-coded sky blue (Platform

A), light green (Platform B), and orange

(Platform C). Variability and robustness of the

predictions are presented in the boxplots that

show outliers, interquartile range, and median.

This illustration shows the cross-platform

 Alsubayhay et al 891

 J Technol Res. 2026;4:880-897. https://jtr.cit.edu.ly

generalization of this model and the platforms

that pose more difficulties in prediction.

Fig 4. PAGA Layer Attention Weights

Fig 4. demonstrates attention weights obtained

at the PAGA layer when software modules (y-

axis) and hardware nodes (x-axis) are

connected. The low and high values of attention

are denoted by color gradient light yellow to

dark blue (YlGnBu). The darker colors

demonstrate stronger impact of a hardware node

on a software module which marks important

software-hardware interactions. The accuracy

of cell values gives the exact attentions values

that can be viewed in terms of which nodes the

model attends to, to predict the performance

accuracy across the platforms.

4.2 Cross-Platform Temporal Memory Layer

Performance

CPTM layer was successful in capturing the

temporal dynamics of software performance on

different platforms. It simulated dynamic

dependencies in a workload and hardware

behaviour by maintaining a node specific

memory state and updating that state according

to the interactions it has with other nodes. The

temporal embeddings produced enabled the

framework to monitor the changing trends on

implementation and resource utilization as time

goes and make predictions more robust. It was

also enhanced by integration with the PAGA

spatial embeddings to transfer across platforms,

showing that the CPTM layer is critical in

modeling both time-ranging variations in

performance. Generally, it played a very

significant role in making steady, flexible and

precise predictions in various hardware

conditions.

Fig 5. Temporal Prediction of CPU Usage

Fig 5. indicates the time prediction of the CPU

usage of a software module over time. The blue

one is the real use of the CPU which is

registered in the platform, and the red dashed

line is the estimated CPU use which is

registered in the CPTM layer. The fact that the

model is able to absorb trends over time is

shown by the fact that the predicted line aligns

with the actual line. The grid offers a guideline

in the time advancement and degree of usage.

Fig 6. Temporal Prediction Error of CPTM Layer

Fig 6. demonstrates the time prediction error of

CPTM layer of a software module. The blue line

shows the average prediction error with time;

the shaded light blue area is the band of standard

deviation errors of prediction within the model

i.e. the uncertainty of the prediction of the

model. Peaks on the error line mark the times

where there is more prediction deviation. This

visualization shows how CPTM predictions are

 Alsubayhay et al 892

 J Technol Res. 2026;4:880-897. https://jtr.cit.edu.ly

stable over time and how the uncertainty

changes with time, which can be used to

evaluate robustness of the model over time.

Fig 7. Memory Allocation Dynamics Over Time

Fig 7. depicts the cumulative memory usage of

software module in three platforms with time.

Platform A is represented by the shade of blue,

Platform B by the shade of green, and Platform

C by the shade of orange. The area chart depicts

the accumulating memory usage in the course

of the execution and can be used to compare the

memory efficiency in the platform on which it

is run as well as pointing to points of peak

usage. The overlapping trends can be visually

identified in the shaded areas due to their

transparency, and they can be identified as

difference in platform memory management.

4.3 NSGA-II performance

The NSGA-II algorithm was successful in

optimization of deployment configurations

because it took into account execution time,

energy consumption and memory usage as the

objective measures in the same time frame.

These metrics were selected due to the direct

measure of both software and resource

efficiency that are the essential features of

cross-platform deployment and cost-effective

operation. Using the forecasted results of the

PAGA-CPTM model, NSGA-II was able to find

Pareto-optimal configurations that trade-offs

between the three objectives. The non-

dominated sorting, crossover, and mutation

evolutionary process provided various

candidate solutions, which have shown that

multi-objective optimization can be efficiently

utilized to optimize resource allocation and

ensure high performance and adaptability on a

heterogeneous platform.

Fig 8. Predicted Vs Actual Execution Time Across

Platforms

Fig.8 indicates projected and real execution

times of various platforms. The colour of each

platform signifies the platform i.e. blue signifies

Platform A, green signifies Platform B, orange

signifies Platform C. The dashed diagonal red

line is a pointer of flawless prediction. The

points that are near the diagonal indicate precise

predictions, and on the contrary, the deviations

indicate mistakes of the model. This scatter plot

shows how the model is able to generalize in

dissimilar computing platforms.

Fig 9. Memory Versus Energy Consumption Across

Platforms

 Alsubayhay et al 893

 J Technol Res. 2026;4:880-897. https://jtr.cit.edu.ly

Fig 9. represents the trade-off between the peak

memory and energy consumption of candidate

deployment configurations. The color of the

points is platform-based, with the blue color

representing Platform A, the green color

representing Platform B and the orange color

representing Platform C. Every point indicates

a candidate configuration that is rated by

NSGA-II. The scatter plot is used to plot the

Pareto front, which illustrates cases in the

lower-left corner where configurations of low

memory usage and energy consumption are

obtained. The described plot provides the

allocation of resources to a variety of platforms

and assists in finding effective solutions to the

optimal cross-platform implementation.

Fig 10. Energy Consumption Per Module Across

Platforms.

Fig 10. shows the software modules energy

consumption of the three platforms. Each of the

bars has a blue section that is the energy used by

Platform A, the green section used by Platform

B and the orange section used by Platform C.

Viewed as stacked bars, the cumulative energy

utilization in each module may be visualized

and compared to clearly see the contribution of

each platform to the overall energy

consumption. The total energy of Module A is

maximum and that of Module C is minimum,

indicating that there is variability in the energy

requirements of software components and

efficiency of platforms.

Fig 11. Module Execution Time Distribution

Fig 11. plots the relative performance of four

software modules (A, B, C, D) on the execution time.

It shows that there is a high level of performance

differences with the highest execution time of

Module C and the most efficient of them is Module

A. This empirical information plays a vital role in

training your machine learning models since by

determining these computational bottlenecks, which

constitute the starting point in the proper prediction

of performance and eventually the optimal

distribution of resources across various platforms.

4.4 Performance Comparison

The performance comparison reveals that the

proposed PAGA–CPTM–NSGA-II model

significantly outperforms traditional and

existing machine learning approaches across all

evaluation metrics. These results demonstrate

that integrating platform-aware spatial

attention, temporal memory modeling, and

evolutionary optimization ensures robust,

accurate, and resource-efficient cross-platform

performance prediction.

Fig 12. Optimization Convergence Comparison

Fig 12. compares the convergence behavior of

five optimization algorithms — Greedy Search

 Alsubayhay et al 894

 J Technol Res. 2026;4:880-897. https://jtr.cit.edu.ly

(red), Simulated Annealing (cyan), Genetic

Algorithm (green), Particle Swarm

Optimization (blue), and Proposed NSGA-II

(magenta) — across iterations. The y-axis

represents the objective function value (lower is

better), and the x-axis denotes the number of

optimization iterations. The NSGA-II curve

rapidly converges to the lowest objective value,

showing better stability and faster convergence,

while Greedy and SA exhibit slower

improvements. The color-coding highlights

algorithmic efficiency, with NSGA-II providing

the best trade-off between execution time,

energy, and memory optimization across all

iterations.

Table 3. Performance Comparison Across Various Models

Model MAE RMSE R² MAPE

(%)

Execution

Time

Reduction

Energy

Saving

Memory Utilization

Improvement

Random Forest

[22]

0.182 0.236 0.84 1.65 8.5 % 6.2 % 5.1 %

Linear

Regression [23]

0.143 0.201 0.95 7.4 11.7 % 8.4 % 6.8 %

FCNN-DGV [24] 0.337 0.126 0.91 2.9 16.4 % 14.8 % 9.2 %

LSTM-MLP-

NSGA-II [25]

0.126 0.178 0.92 6.1 18.9 % 15.3 % 10.6 %

Proposed PAGA–

CPTM–NSGA-II

0.087 0.132 0.97 3.8 26.8 % 23.5 % 17.4 %

Table 3. indicates that the proposed PAGA-

CPTM-NSGA-II model has a high predictive

efficiency in all measures. It scores the lowest

MAE (0.087), RMSE (0.132), and the highest R

2 (0.97) and outperforms the baseline models,

namely, Random Forest (MAE = 0.182, R 2 =

0.84) and LSTM-MLP-NSGA-II (MAE =

0.126, R 2 = 0.92). In addition to this, the model

presented shows great resource optimization

with an execution time reduction of 26.8% and

energy savings of 23.5% and memory

optimization of 17.4% as compared to all other

methods. All these findings strongly imply the

strong adaptability, increased learning ability,

and high computational efficiency of the model,

making it a more trustworthy and scalable

model compared to the current machine

learning and hybrid models.

4.5 Discussion

The proposed PAGA-CPTM-NSGA-II model is

effective in predicting and optimization of

cross-platform software performance through

the relations of spatial, temporal and

optimization learning. The PAGA layer is used

to capture dependencies between hardware and

software, whereas the CPTM layer is used to

represent the temporal dynamics, making it

possible to predict the performance of a

heterogeneous platform accurately. The NSGA-

II optimizer is an efficient tool in terms of

execution time, energy use and memory usage,

which results in better resource efficiency and

low-cost implementation. The proposed

strategy is more accurate in prediction and

flexible than the traditional one. Nevertheless,

the framework is not scalable since it utilizes

large dataset and is computationally complex in

terms of graph creation and optimization.

Transfer learning, online adaptation, and

 Alsubayhay et al 895

 J Technol Res. 2026;4:880-897. https://jtr.cit.edu.ly

lightweight graph sampling can be involved in

future work to increase scalability and the

applicability to real-time. Also, optimization of

reinforcement learning and explainable AI

integration will further enhance the

transparency of decisions and flexibility to

dynamic, multi-platform environments.

5. Conclusion and Future Work

The suggested PAGA-CPTM-NSGA-II

framework is a good solution to the problems of

software performance prediction and resource

optimization in the framework of heterogeneous

computing platforms. The model is able to

predict the execution time, CPU usage, memory

consumption and energy efficiency accurately

by incorporating platform-aware graph

aggregation, contextual temporal modeling and

multi-objective optimization and it obtains the

most optimum deployment configurations. It

has been shown that experimental analysis can

improve significantly compared to the

traditional machine learning and deep learning

approaches in prediction accuracy, cross-

platform adaptability and optimality. The model

provides reasonable performance and resource

usage ratio, facilitating the sustainable

computing and cost-efficient business

processes. Moreover, the proposed solution has

a high-scale factor, and it has a capability to

support numerous workloads and various

platform configurations without negatively

affecting performance. Its usefulness can be

observed as it exists in practical computing

environments in the real-world; it can inform

resource allocation and deployment strategies to

improve the performance and energy

consumption of systems in cloud, GPU, and

mobile infrastructures.

To improve cross-platform adaptability and

scalability of the proposed PAGA–CPTM-

NSGA-II framework, the proposed study will

include transfer learning in future work.

Transfer learning will allow predictive model to

remember already learnt patterns of software-

hardware interaction and adapt effectively to

new or unknown computing conditions with

minimum retraining. The method can greatly

save on computational expenses, and also, high

accuracy of prediction is guaranteed in a variety

of hardware designs. Moreover, it can make the

framework have a greater real-world

applicability by being able to be deployed

quickly in dynamic computing infrastructures in

which performance profiles often change. The

improvement will enhance the generalization

and long-term adaptability of the model to

perform predictions and optimize its

performance.

Reference

[1] Pamisetty A. Agentic Intelligence and Cloud-

Powered Supply Chains: Transforming

Wholesale, Banking, and Insurance with Big

Data and Artificial Intelligence. Deep Science

Publishing; 2025.

[2] Vaithianathan M. Memory Hierarchy

Optimization Strategies for High-Performance

Computing Architectures. International

Journal of Emerging Trends & Technology in

Computer Science. 2025:1–24.

[3] Hu Y. Design and Application of English

Learning System Based on Web Technology

and Hybrid Deep Attention-Based Recurrent

Neural Network. In: 2025 3rd International

Conference on Data Science and Network

Security (ICDSNS). IEEE; 2025. p. 1–6. doi:

10.1109/ICDSNS65743.2025.11168535.

[4] Benrachou DE, Glaser S, Elhenawy M,

Rakotonirainy A. Use of social interaction and

intention to improve motion prediction within

automated vehicle framework: A review. IEEE

Trans Intell Transp Syst. 2022;23(12):22807–

22837. doi: 10.1109/TITS.2022.3207347.

[5] Liang H, Zhang Z, Hu C, Gong Y, Cheng D. A

survey on spatio-temporal big data analytics

ecosystem: Resource management, processing

platform, and applications. IEEE Trans Big

Data. 2023;10(2):174–193. doi:

10.1109/TBDATA.2023.3342619.

[6] Kansara M. A framework for automation of

cloud migrations for efficiency, scalability, and

robust security across diverse infrastructures.

Quarterly Journal of Emerging Technologies

and Innovations. 2023;8(2):173–189.

[7] El Motaki S, Yahyaouy A, Gualous H, Sabor J.

A new weighted fuzzy C-means clustering for

 Alsubayhay et al 896

 J Technol Res. 2026;4:880-897. https://jtr.cit.edu.ly

workload monitoring in cloud datacenter

platforms. Cluster Comput. 2021;24(4):3367–

3379. doi: 10.1007/s10586-021-03331-2.

[8] Hu Q, Sun P, Yan S, Wen Y, Zhang T.

Characterization and prediction of deep

learning workloads in large-scale GPU

datacenters. In: Proc Int Conf High Perform

Comput, Netw, Storage Anal. 2021. p. 1–15.

doi: 10.1145/3458817.3476223.

[9] Zhou Y, Yu X. Multi-Graph Spatial-Temporal

Synchronous Network for Student

Performance Prediction. IEEE Access. 2024.

doi: 10.1109/ACCESS.2024.3471681.

[10] Wang Z, et al. SLAPP: Subgraph-level

attention-based performance prediction for

deep learning models. Neural Netw.

2024;170:285–297.

[11] Rankovic N, Rankovic D, Ivanovic M,

Kaljevic J. Interpretable software estimation

with graph neural networks and orthogonal

array tunning method. Inf Process Manag.

2024;61(5):103778.

[12] Showkatbakhsh M, Makki M. Multi-objective

optimisation of Urban Form: a framework for

selecting the optimal solution. Buildings.

2022;12(9):1473. doi:

10.3390/buildings12091473.

[13] Zhang K, Xing S, Chen Y. Research on Cross-

Platform Digital Advertising User Behavior

Analysis Framework Based on Federated

Learning. Artificial Intelligence and Machine

Learning Review. 2024;5(3):41–54.

[14] Pintye I, Kovács J, Lovas R. Enhancing

machine learning-based autoscaling for cloud

resource orchestration. J Grid Comput.

2024;22(4):68. doi: 10.1007/s10723-024-

09783-1.

[15] Amaris M, Camargo R, Cordeiro D, Goldman

A, Trystram D. Evaluating execution time

predictions on GPU kernels using an analytical

model and machine learning techniques. J

Parallel Distrib Comput. 2023;171:66–78. doi:

10.1016/j.jpdc.2022.09.002.

[16] De Filippo A, Di Giacomo E, Borghesi A.

Machine learning approaches to predict the

execution time of the meteorological

simulation software COSMO. J Intell Inf Syst.

2025;63(1):85–109. doi: 10.1007/s10844-024-

00880-x.

[17] Cordeiro-Costas M, Labandeira-Pérez H,

Villanueva D, Pérez-Orozco R, Eguía-Oller P.

NSGA-II based short-term building energy

management using optimal LSTM-MLP

forecasts. Int J Electr Power Energy Syst.

2024;159:110070. doi:

10.1016/j.ijepes.2024.110070.

[18] Kumar RK, et al. (PDF) Cross-Platform

Performance Prediction with Transfer Learning

using Machine Learning. In: ResearchGate.

2021. doi:

10.1109/ICCCNT49239.2020.9225281.

[19] Rua R, Saraiva J. A large-scale empirical study

on mobile performance: energy, run-time and

memory. Empir Softw Eng. 2024;29(1):31. doi:

10.1007/s10664-023-10391-y.

[20] Ford BW, Zong Z. Portauthority: Integrating

energy efficiency analysis into cross-platform

development cycles via dynamic program

analysis. Sustain Comput Inform Syst.

2021;30:100530. doi:

10.1016/j.suscom.2021.100530.

[21] Cloud Computing Performance Metrics

[Internet]. 2025 [cited 2025 Oct 16]. Available

from:

https://www.kaggle.com/datasets/abdurraziq0

1/cloud-computing-performance-metrics

Appendix

Algorithm.1 NSGA-II for Cross-Platform

Deployment Optimization

Input: metrics = {execution_time, energy,

memory_usage}, N, G, α, β, γ

Output: optimal_solutions

Initialize population P with N random

deployments

for each individual i in P:

 fitness[i] = α * execution_time[i] + β *

energy[i] + γ * memory_usage[i]

if P is not empty:

 sort P into Pareto fronts

 calculate crowding_distance for each

individual

else:

 return "Population Initialization Error"

generation = 0

while generation < G:

 parents = select_parents(P)

 offspring = crossover(parents)

 mutate(offspring)

 for each individual j in offspring:

https://www.kaggle.com/datasets/abdurraziq01/cloud-computing-performance-metrics
https://www.kaggle.com/datasets/abdurraziq01/cloud-computing-performance-metrics

 Alsubayhay et al 897

 J Technol Res. 2026;4:880-897. https://jtr.cit.edu.ly

 fitness[j] = α * execution_time[j] + β *

energy[j] + γ * memory_usage[j]

 R = P ∪ offspring

 sort R into Pareto fronts

 calculate crowding_distance for R

 if size(R) > N:

 P = select_top_N(R, N)

 else:

 P = R

 generation = generation + 1

end while

if P contains non_dominated_solutions:

 optimal_solutions =

extract_non_dominated(P)

else:

 optimal_solutions = random_selection(P)

return optimal_solutions

Algorithm 2 : Cross-Platform

Spatiotemporal Performance Prediction

Input: dataset D

Output: predicted_metrics,

optimal_deployment

if D is empty:

 return "No data available"

for each record r in D:

 if missing_numeric(r):

 replace(r, mean_or_median)

 if missing_categorical(r):

 replace(r, mode)

 handle_outliers(r)

normalize_features(D)

extract_features(D, hardware_load,

software_workload)

align_timestamps(D)

G = create_graph(nodes =

{software_modules, hardware}, edges =

dependencies)

assign_node_features(G, workload,

platform)

for each node i in G:

 h_i = transform(node_features[i])

 for each neighbor j:

 alpha_ij = compute_attention(i, j)

 h_i_prime = aggregate(alpha_ij,

neighbors)

for each time_step t:

 m_i[t] = update_memory(h_i[t-1],

input[t])

 for each node j:

 beta_ij[t] = temporal_attention(i, j, t)

 h_i[t] = aggregate_temporal(beta_ij[t],

h_i[t])

z_i = fuse_features(h_i_PAGA, h_i_CPTM,

platform_features)

predicted_metrics = predict(z_i, targets =

{execution_time, CPU, memory, energy})

loss = weighted_MSE(predicted_metrics,

actual_values)

if new_platform_detected:

 fine_tune_embeddings(D)

initialize_population(configs, size = N)

generation = 0

while generation < G:

 for each config c:

 fitness[c] = α * execution[c] + β *

energy[c] + γ * memory[c]

 ranked = non_dominated_sort(fitness)

 parents = select_parents(ranked)

 offspring = crossover_mutation(parents)

 generation = generation + 1

optimal_deployment =

extract_Pareto_solutions(offspring)

deploy(optimal_deployment)

if deviation_detected(metrics):

 adjust_resources(optimal_deployment)

return predicted_metrics,

optimal_deployment

