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ABSTRACT

Efficient cross-platform performance prediction and resource optimization are critical for deploying
software applications in heterogeneous computing environments. Existing models often struggle to
capture complex software—hardware dependencies and evolving workload dynamics, resulting in limited
prediction accuracy and poor adaptability. To overcome these limitations, this study introduces a unified
intelligent framework that seamlessly integrates Platform-Aware Graph Attention (PAGA), Cross-
Platform Temporal Memory (CPTM), and NSGA-II optimization. This tri-layer integration uniquely
combines structural dependency learning, temporal sequence understanding, and multi-objective
optimization to deliver adaptive and generalizable performance prediction across diverse hardware
platforms. The model is implemented in Python using PyTorch for deep learning components and
NumPy/Matplotlib for analysis. Experiments are conducted on a cloud performance dataset (CPU,
memory, network, energy, execution time, instruction count) from Kaggle. The proposed framework
achieves high prediction accuracy with MAE = 0.087, RMSE = 0.132, and R2 = 0.97, marking a 20—
25% improvement over baseline models. In the optimization stage, NSGA-II achieves 26.8% execution
time reduction, 23.5% energy saving, and 17.4% memory utilization improvement. These results
highlight the novelty and effectiveness of the integrated PAGA-CPTM-NSGA-II architecture,
demonstrating its potential for scalable, resource-efficient, and cross-platform software performance
management in real-world deployments.

Keywords: Cross-Platform Performance Prediction, Energy-Efficient Computing, Meta-Learning, Resource
Utilization Optimization, Software Performance Modelling
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workloads change and modules of software

1. INTRODUCTION interact with various hardware components [5],

The rapid growth of cloud computing and non- [6]. Machine learning can provide a powerful

homogeneous  hardware  has  rendered answer  through learning an  irregular

forecasting software performance in the variety
of platforms extremely complex [1]. Change in
CPU capacity, memory hierarchy, and network
architecture leads to variation in the execution
time, energy consumption and usage of
resources [2]. Conventional rule-based
prediction systems do not represent such
dynamic software-hardware interactions and
therefore fail to give accurate predictions and
waste resources [3], [4]. Dependence on other
modules and temporal variation are additional
complicates of performance analysis as the

dependence between system behaviour and
workloads [7], [8]. Inter-module dependencies
can be represented by graph-based and temporal
models and the changing performance trends
with time, enhancing the accuracy of prediction
[9], [10]. Furthermore, to make deployment
optimal, one should balance several goals, e.g.,
to minimize the time of execution, the use of
memory, and usage of energy [11]. Multi-
objective optimization algorithms are able to
find effective configurations that optimize
performance and limits overhead [12], [13]. The
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generalization of models to  unseen
environments can also be guaranteed through
cross-platform adaptability.

1.1 Research Motivation

The existing models of performance prediction
are not applicable to modern computing
environments because they do not emulate the
dynamic interaction between software and
hardware layers, resulting in a failure to
estimate the execution time and allocate
resources efficiently. This is a weakness that
restricts system optimization and scalability of
the heterogeneous platforms. The practical
significance of this research is to create the
machine learning-based predictive model that
will  help accurately predict software
performance in various platforms to allow
optimal use of the resources and could lead to a
higher efficiency of operations in the real-life
setting of the computing process.

1.2 Significance of the Study

This study is important because it deals with
such a severe problem as the necessity of
precise cross-platform performance forecasts in
contemporary computing ecosystems. The
proposed model combines the graph neural
networks and the temporal memory layers to
help to capture the intricate interactions of
software modules and hardware components
across time. Multi-objective optimization is
built into the deployment decisions to have the
effect of balancing the execution time, energy
consumption, and memory usage to result in
efficient resource utilization. The results of this
study can be used to create more sophisticated
and responsive performance prediction models
and help to improve the field of cloud
computing as well as heterogeneous systems
management.

1.3 Problem Statement

The fast evolution of heterogeneous computing
platforms and complex computing workloads
have rendered effective performance prediction
to be a challenging task. The current research

usually uses a set of static benchmarks or
regression-based models, which do not
represent dynamic software-hardware
interactions and changes in execution patterns
over time, resulting in inefficient resource
utilization and suboptimal deployment choices
[14], [15]. This study manages to address them
by introducing a unified machine learning
framework that incorporates both graph-based
modelling and temporal memory networks,
along with cross-platform adaptation and multi-
objective optimization. The strategy allows
specific forecasting of the execution time,
energy, and memory consumption, which will
guarantee effective resource management on a
variety of computing systems.

1.4 Key Contributions

e A new deep learning-based hybrid
framework, PAGA—CPTM-NSGA-II,
is proposed for accurate cross-platform
performance prediction and
optimization of software applications.

e Introduces a PAGA Layer to effectively
capture complex software—hardware
interaction  patterns and  spatial
dependencies among computational
nodes.

e Develops a CPTM Layer to model
temporal variations in workload and
resource utilization, enhancing

adaptability across

heterogeneous platforms.

predictive

e Employs NSGA-II to optimize
performance metrics such as execution
time, energy consumption, and memory
utilization, yielding Pareto-optimal
deployment solutions.

2. RELATED WORK

Amaris et al. [15] and Pintye et al. [14]
examined machine learning-based mechanisms
of predicting performance and optimizing
resources in a heterogeneous computing
platform. Amaris et al. used analytical modeling
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and Random Forest and Support Vector
Regression to accurately estimate the time of
GPU kernel executions based on performance
metrics of benchmarks with RMSE of 0.21 and
R- squared equal to 0.94. Pintye et al. proposed
a reinforcement learning-based framework of
cloud autoscaling which was trained on the
CPU, memory, and latency measurements of the
public cloud traces and enhanced the utilization
of resources by 18% and minimized the
overhead by 12%. Taken together, these works
demonstrate that hybrid analytical-machine
learning models can enhance accuracy and
efficiency in the context of both GPU and cloud
environments, but it is still difficult to sustain
generalization in the case of a wide range of
workloads.

De Filippo et al. [16] suggested a machine
learning method to estimate the execution time
of the COSMO meteorological simulation
software. Data on historical performance in
simulation and execution logs were used to train
regression and ensemble models in the study.
Random Forest and Gradient Boosting gave
good results, with MAE of 0.34, and RMSE of
0.42. The shortcoming was decreased
adaptability to the invisible hardware layouts
and the complicated patterns of paralleling
execution.

Cordeiro-Costas et al. [17] suggested an NSGA-
[I-based hybrid LSTM-MLP prediction model
in building shorthand energy management. It
included hourly occupancy data, temperature
data, and hourly energy consumption data. Deep
learning  with  evolutionary  optimization
resulted in 15 percentage point energy
efficiency. The model had RMSE of 0.126 and
aR 2 0f 0.983 and was highly computing power
intensive thus less viable in the low-resource
environment and could not be used in real-time.

Kumar et al. [18] introduced a transfer learning-
based cross-platform performance prediction
model based on machine learning to further
improve generalization. The data set contained
logs of runtime and energy consumptions of
heterogeneous computing platforms. Solutions

like domain adaptation and regression learning
were applied. The model obtained MAE=0.27
and RMSE=,0.33 in unseen platforms though
high variability workloads needed fine tuning.

Rua and Saraiva [19] suggested mass empirical
research that would measure the performance of
mobile applications regarding energy and
runtime and memory efficiency. Statistical
analysis and regression indicated that there were
important power-performance trade-offs. The
model predicted energy with an R 2 of 0.91,
however, the heterogeneity of the devices and
the inconsistency of apps could not be
universalized.

Ford and Zong [20] suggested PortAuthority, a
dynamic program analysis framework that was
proposed as a means of introducing energy
efficiency  analysis to  cross-platform
development. The research involved the use of
benchmark programs that were run on different
systems in order to compare energy and CPU
efficiency. It used runtime analysis and profile
analysis to profile the patterns of power
consumption. The framework minimized the
average energy consumption by 11 percent, yet,
it lacked predictive power and used nearly
solely the execution-level profiling.

The literature review points out the necessity of
proper performance prediction and optimization
in  heterogeneous  computing  settings.
Forecasting machine learning models and
methods have been used to predict the time
taken by an execution of a GPU kernel, cloud
autoscaling, and simulations of weather
conditions, with a focus on performance and
flexibility. Such multi-objective models as
NSGA-II and transfer learning techniques are
used to increase cross-platform prediction and
empirical studies of energy and run-time help to
maximise software performance and resource
use on various computational platforms.

3. Proposed Spatiotemporal Graph
Attention Network for Cross-Platform
Performance Prediction
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The proposed approach gives a systematic
model that seeks to predict, optimize, as well as
deploy the software applications efficiently on
heterogeneous  computing  platforms. It
combines the modelling based on data,
spatiotemporal learning about graphs and multi-
objective optimization to describe the software-
hardware dependence and dynamic workload
behaviours. This is initiated by data collection

and pre-processing, then structure of a graph
constituting interactions between software
modules and hardware components. Learning
of space and time PAGA and CPTM. Lastly, the
multi-metric  prediction, optimization, and
deployment can be used to guarantee efficient
use of resources across platforms. Fig. 1
represents the entire workflow.

Graph Construction
Data collection ! “

Preprocessing

—> | cleaning |

Feature
Extraction

Temporal
Alignment_|

Multi-Metric
Spatiotemporal Modeling
Prediction i 5 s
Cross-

Platform
Deployment
Temporal Encoding: Cross-Platform

Optimization l Temparal Memary (CPTM)
(NSGA-I) —

Spatial Encoding: Platform-Aware
Graph Attention (PAGA)

Table.1 Dataset Description

Fig 1. Workflow of the Proposed Model

3.1 Data Collection

The study uses the Kaggle Cloud Computing
Performance Metrics[21], data that records
heterogeneous ~ behaviour  of  software
applications in the platform. The data are CPU
utilization, memory usage and network traffic,
power consumption, execution time, and the
number of executed instructions, workload
descriptors and platform metadata. These
measures are the interplay of software modules
and hardware resources in diverse workload and
configurations. Temporal modelling of
performance dynamics can be achieved by use
of time-stamped records. Such multi-
dimensional data can then be collected, which is
the basis of building software-hardware graphs,
deriving useful node and edge features, and
training higher-level spatiotemporal models to
be precise in predicting cross-platform
performance. Table 1 provides a sample of such
data with some of the most important metrics
and task descriptions.

CPU Memory Network Power Num  Executed | Execution Energy
Usage Usage Traffic Consumption Instructions Time Efficiency
54.88 78.95 164.78 287.81 7527 69.35 0.55

71.52 29.90 184.23 362.27 5348 41.40 0.35

55.82 92.71 203.67 231.47 5483 24.60 0.80

54.49 88.10 184.23 195.64 5876 16.46 0.53

42.37 72.42 184.23 359.45 3361 55.31 0.35

3.2 Data Preprocessing computing performance data into a clean and

Pre-processing attempts to convert raw cloud

consistent and structured format that is suitable
to spatiotemporal modelling. It supports the
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missing values, outliers, as well as
heterogeneous = measures, and  derives
significant software and hardware features.
Temporal alignment can guarantee the
performance dynamics in sequences, which can
be predictable precisely cross-platform by
sophisticated GNN and temporal model.

3.2.1 Data Cleaning

Data cleaning is used to solve problems such as
missing values, outliers, and inconsistent time.
The mean or the median of the corresponding
column is used to impute numeric missing
values (CPU, memory, execution time).
Categorical values (type of task, status) are
filled with a mode. Z-score or interquartile
range (IQR) is used to identify outliers that are
either capped or eliminated. The consistency of
timestamps is achieved by putting all records
into a unified data time form and sorting them
in order. Adequate cleaning helps in avoiding
model bias, providing stable training and also
preserving consistency of cross platform
performance patterns in a variety of workloads
and hardware settings.

3.2.2 Normalization

Normalization is used to convert heterogenous
numerical measurements to a shared scale so
that large-valued features will not prevail and to
enhance convergence of the model. The aspect
of CPU utilization, memory, execution time and
energy efficiency are very important to make
sure that features are balanced when learning
through spatial and temporal encoders.

X=Xmi
X = min 1
Xmax~Xmin ( )

In eqn. (1), xis the original feature value,
Xminand X, q,are column-wise minimum and
maximum, and x'is the normalized value
between 0 and 1.

3.2.3 Feature Extraction

The feature extraction transforms raw metrics
into meaningful ones to the model. Hardware
load is a parameter that is used to denote the
consumption of resources in terms of CPU and

memory usage. Software workload is used to
measure the execution time and number of
instructions and characterizes application
behaviour. The node features of the Spatial
Encoder (GAT) are encoded as platform
metadata (type of task, its priority, and VM ID).
These features extracted enable the model to
acquire how the various software tasks relate to
hardware usage patterns. Proper feature
engineering: This guarantees that software
behaviour and platform characteristics are both
represented so that cross platform performance
can be predicted correctly.

3.2.4 Temporal Alignment

Temporal alignment groups the data into series
in order to model time behaviour. The
timestamps are utilized to build ordered
sequences that have set window sizes that can
be used with CPTM Layer. The snapshots of
each sequence contain a set of performance
snapshots with time dependencies. Just to have
continuity, missing times are interpolated or
forward-filled. This process enables the
temporal encoder to acquire the dynamics of
performance measures with different workloads
and hardware settings. Correct alignment
guarantees the sequential patterns are
successfully picked to enhance the capability of
the model in forecasting future dynamics of
cross-platform performance.

3.3 Cross-Platform Graph Modelling

This step is an input to a software-hardware
graph, which is the representation of the
interactions between software modules and
hardware components. Nodes are associated
with software functions or modules and
hardware components like CPU, memory and
network interfaces. Dependency relationships
or shared resource usage is represented by edges
which show how software tasks are related with
hardware resources. The features of every node
correspond to workload (e.g., number of
instructions executed, batch size), hardware
usage (CPU, memory, network [/O
percentages), and platform-specific (server,
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cores, memory capacity) features. This directed
graph enables the spatial encoder (GAT) to
learn meaningful node representations as well
as learn platform relational dependencies. The
adjacency A is a mathematically expressed
adjacency graph.

Aij =
{1, if i and j share a dependency or resource @)
0, otherwise

In eqn. (2), A;jdenotes whether nodes iand jare
connected. A value of 1 indicates a dependency
or resource-sharing relationship, while 0
represents no connection, defining the graph
structure for GAT learning.

3.4 Spatiotemporal Feature Learning

The Spatiotemporal Feature Learning learns
both the spatial and temporal information in
cloud computing performance data. The spatial
component describes the relations between
software modules and hardware resources
whereas the temporal component acquires
patterns within a heterogeneous platform across
time. They can produce enriched embeddings
together which allow predicting cross platform
performance with correct accuracy across
various measures.
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.............

| Prediction Layer |

Fig 2. Spatiotemporal Architecture

Fig. 2. shows the workflow of the PAGA-
CPTM-NSGA-II model developed to predict
and optimize cross-platform performance. It
starts with the performance input data that goes
through a Convolutional (Conv) Layer to
identify low-level spatial patterns. The Spatial
Encoding Block has a Graph Attention Layer,
which represents inter-feature interactions, a
Platform-Aware Attention Layer, which uses
hardware-specific context, and a Graph
Aggregation Layer, which consolidates the
representations of nodes. It encodes time
dependence data with the help of Temporal
Attention Layer and a Cross-Platform Temporal
Memory (CPTM) module, which encodes both
sequential and cross platform dynamics, and
finally performs Temporal Aggregation to
summarize the data. The results are then
presented into the Fully Connected (FC) Layer
and Layer Normalization to refine the feature,
and finally the Prediction Layer produces the
best performance measures.

J Technol Res. 2026;4:880-897.

https://jtr.cit.edu.ly



887

Alsubayhay et al

3.4.1 Spatial Encoding with PAGA

The PAGA Layer is a platform interaction
model of software modules and hardware
components in heterogeneous platforms. Every
node denotes either a software or hardware
component and an edge denotes dependence or
resource. The features of the nodes encompass
workload metrics (CPU, memory, execution
time), hardware utilization and platform
metadata. The layer calculates attention
coefficients to weigh neighbour influence and
the use of platform specific information, and
outputs spatial embeddings which formulate
important dependencies of cross platform
performance prediction, as represented in (3)

hD = wy, 3)

This transforms the raw input features x;of node
iinto a learnable embedding hgl)at layer I. The

weight matrix W ®is learned during training,
enabling the model to capture complex
interactions between workload metrics and
hardware usage.

“4)

o = exp (LeakyReLU(a” [h;llh;lIP;IIP]))
YU Tkew(i)exp (LeakyReLU(aT [hyllhglIPlIPk]))

In eqn. (4), attention coefficient @;;jmeasures
the importance of neighbor jfor node i. Here,
hiand hjare node embeddings, P;and Pjare

platform  metadata, NV (i)represents the
neighbors of i, and LeakyReLU adds non-
linearity. The softmax ensures normalization
across neighbours., as represented in (5).

hi = U(Z, _aj;hy) Q)
JEN (D)

The updated embedding hjaggregates the
neighbor embeddings h;weighted by attention
@;j. The activation function o(e.g., ReLU)
introduces non-linearity. The step captures
platform conscious spatial dependencies, in a
way that yields enhanced node representations
to the downstream cross-platform prediction of
performance tasks.

3.4.2 Temporal Encoding with Cross-Platform

Temporal Memory

The CPTM Layer measures the time dynamics
of performance of software applications on
heterogeneous platforms. It simulates the
effects of executions in the past, changes in
work load and the use of hardware on future
performance. The historical states of each node
are stored in a temporal memory, which is
interacting with time-stamped streams of
software and hardware metrics. This allows the
network to develop long-term dependencies and
platform-specific time-dependent patterns that
can be used to predict the cross-platform
performance accurately.

t t—1 t
" = foemory (2 )

)

In eqn. (6) ml.(t combines the previous node

embedding hgt_l)with the current input features

xi(t)using a learnable function fremery- This

enables the model to remember the important
past experiences besides incorporating the new
observational ones.

exp (LeakyReLU(b” [m{”1mS?1P1P 1))

®) _
Bij Tken(iy exp (LeakyReLUBT [m P Im V1P, ]))

(7

In eqn. (7) ,Bi(;) weighs the influence of neighbor

L@ and m]@ are

temporal memories, P;and Pjare platform

jon node iat time t. Here, m

metadata, and IV (i)represents neighbors. The
SoftMax normalization ensures that there is the
right allocation of attention among the
neighbours.

h® — 4 Z 0, ®
¢ ( jeN(i)ﬂU i)

In eqn. (8) hl@ aggregates neighbor memories
weighted by attention ﬁi(jt). The activation

ointroduces non-linearity, allowing the model
to capture long-term temporal dependencies and
platform-aware dynamics, which are crucial for
cross-platform performance prediction.

3.5 Cross-Modal Embedding Integration
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This step combines both spatial embeddings of
PAGA Layer and temporal embeddings of
CPTM Layer. The embeddings represent other
complementary  features of  software
performance: spatial dependencies between
software modules and hardware components,
and temporal dynamics with time. Other
platform metadata and workload descriptors
(e.g. CPU type, memory capacity, task type) are
appended to the node representation to make it
richer. The composite features are transferred in
fully connected layers to form complete
embeddings that are input to the downstream
prediction task to allow predicting accurate
cross-platform performance.

zi = o(We RO WRZTMN £ + by)

€))

In eqn. (9), z;is the fused embedding for node i,

hPAGAis the spatial embedding, hS*™is the

temporal embedding, f;"*"“represents platform

and workload descriptors, Wrand brare

learnable weights and bias, and ois a non-linear
activation function (e.g., ReLU).

The combination of spatial, temporal and
platform specific information in the model
provides the benefit of utilizing all three
simultaneously to create complete embeddings
that represent the entire range of cross-platform
performance dynamics.

3.6 Multi-Metric Prediction

Multi-Metric Prediction step is to predict
multiple metrics of software applications at the
same time, not the individual ones. These
metrics are time of execution, CPU
consumption, memory consumption and energy
consumption, which combined together
represent the general performance and resource
use of the application on heterogeneous
platform. The model can learn correlations and
interactions to predict performance aspects by
predicting them together in an improved way,
which improves the accuracy and strength of
predictions.

N
1 k ~(k
L= Z¥:1Wk "N § ] 1(yi( ) — yi( ))2 (10)
i=

In eqn. (10), Lis the weighted mean squared
error (MSE) loss, Mis the number of metrics,

Nis the number of samples, yi(k)is the true value

of metric kfor sample i, yi(k)is the predicted
value, and wyis the weight assigned to metric
kto balance their contribution.

This weighted MSE loss ensures that all metrics
are learned appropriately, giving priority to
more critical metrics if needed. It allows the
model to simultaneously optimize predictions
across multiple dimensions, capturing complex
trade-offs in performance, resource utilization,
and energy efficiency.

3.7 Cross-Platform Adaptation

The Cross-Platform Adaptation step ensures
that the model can generalize effectively across
different hardware and software configurations.
Software applications often behave differently
depending on CPU types, memory capacities,
conditions, or virtualization

environments. This step uses platform metadata

network

embeddings and the spatial-temporal patterns
learned by the model to adapt predictions for
new platforms. Techniques such as domain
adaptation, transfer learning, or fine-tuning on a
small subset of target platform data can be
applied. This ensures the model remains robust
and scalable, providing accurate performance
predictions across heterogeneous platforms
without retraining from scratch.

3.8 Optimization of Cross-Platform
Deployment Using NSGA-I1

The optimization objective is formulated as a
fitness function, which combines multiple
predicted metrics into a single measure of
deployment efficiency is represented in (11).

U = a - execution_time + f - energy + y -
(12) memory_usage
Here, U represents the overall utility or cost

function to minimize, while a, [, and yare
weight factors reflecting the relative importance
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of each metric. The performance speed is
represented by the execution time, energy
consumption measures efficiency, and resource
consumption is measured by memory usage.

Algorithm.1 is the optimization of cross-
platform implementation which evolves
populations, applies non-dominated sorting,
and comes up with Pareto-optimal solutions that
balance between the execution, energy, and
memory.

3.9 Cross-Platform Deployment

The Cross-Platform Deployment step is the
implementation of the software modules on the
determined optimal hardware platforms based
on the optimization of NSGA-II. By this phase,
the deployment has ensured that any given
module is allocated to a platform that strikes a
balance on the execution time, CPU and
memory consumption, and power consumption.
This step is able to modify software execution
to fit across server types, cores and memory
capacities, by taking into consideration
platform heterogeneity, and ensure consistency
in performance across environments. Dynamic
adjustments can be made through real-time
monitoring in case actual metrics do not
correspond to the predictions to ensure the
efficient use of resources, minimum energy
consumption, and the stability of execution at
the same time in several platforms.

The prediction of software on heterogeneous
platforms using spatiotemporal embeddings of
PAGA and CPTM are estimated by
Algorithm.2. It combines spatial, temporal and
platform metadata to predict execution metrics
and optimizes the deployment decision with
NSGA-II making sure to efficiently use
resources, consume less energy and achieve
equilibrium  between execution among

platforms.

Table 2. Simulation Parameter

The proposed methodology presents a new
combination of space and time models in the
prediction of software performance on cross-
platforms. The framework incorporates the
PAGA and CPTM layer in order to learn inter-
module dependencies and the temporal patterns
in the long run. Moreover, the combination of
workload and platform metadata provides
greater flexibility in heterogeneous
environments, and prediction is converted into
practical deployment decisions with the help of
the optimization of NSGA-II. Platform-aware
multi-level performance prediction This is a
multi-level approach that guarantees scalable,
efficient and correct performance prediction, as
compared to traditional single-platform, or
purely temporal / spatial models, which offers a
distinctive solution to cross-platform software
optimization.

4. RESULTS AND DISCUSSION

The proposed PAGA-CPTM model managed to
model both space and time dependencies on
heterogeneous computing systems and thus
forecast the performance of different systems in
an accurate and generalized manner. The graph
attention mechanisms as well as the temporal
memory modelling contributed to the
functionality of the system to capture software-
hardware interactions which are complex. The
combination of the learnt embeddings with the
NSGA-II optimization algorithm delivered
equilibrium resourcing plans, exhibiting
enhanced flexibility towards hitherto unnoticed
platforms. Experimental analysis proved that
the suggested method reached a stable
prediction behaviour and a predictable
optimization result, which proved the prospects
of an efficient cross platform implementation
and smart use of resources in a variety of
computing environments.

Parameter Value

Time Window

10-50 timestamps per run

Attention Heads 4
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Node Embedding Dim 128
Activation RelLU
Memory Size 128
Temporal Module Transformer
Sequence Length 50

Hidden Layers 2

Hidden Dim 256

Output Nodes 4

Loss Function Weighted MSE
Population Size 50
Generations 100
Crossover Probability 0.8
Mutation Probability 0.1
Optimizer AdamW
Learning Rate 3e-4

Batch Size 64

Epochs 50-150

Table 2 provide brief details of the main
simulation and training parameters that are to be
used to execute the proposed PAGA -CPTM-
NSGA-II framework. It has parameters of the
spatial and temporal encoder layers, attention
mechanisms, memory modules and network
architecture and parameters of the optimization
algorithm, learning process, and training
schedule. These values have been chosen so that
there is stable convergence, effective
representation learning and efficient multi-
objective optimization on heterogeneous
platforms. The structure is designed to allow a
balance between the computation speed and
model  performance, which offers a
standardized environment in which the
suggested methodology can be reproducible and
evaluated.

4.1 Platform-Aware Graph Attention Layer
Performance

The PAGA layer proved to have an excellent
capability of capturing software-hardware
interaction and platform specific dependencies
in heterogeneous computing environments. It
prioritizes attention on the relevant nodes,
which in effect identified crucial relationship
between software modules and hardware
composites to make more informative
embeddings to do host prediction. The acquired
spatial representations enhanced the model with

the knowledge of structural dependencies not
through explicit feature engineering but a strong
basis of temporal modelling. Combination with
the CPTM layer also boosted further dynamic
performance tracking demonstrating that the
PAGA layer on its own is an important player
in generalization and cross-platform flexibility,
and thus, a significant player in the accurate and
efficient performance prediction.

Cross-Platform Prediction Error Distribution

12
10 _

Prediction Error (%)

Platform A Platform B Platform C
Platform

Fig 3. Cross-Platform Prediction Error Distribution

Fig 3. shows prediction error distribution in
various platforms based on the Leave-One-
Platform-Out assessment. The individual
platforms are color-coded sky blue (Platform
A), light green (Platform B), and orange
(Platform C). Variability and robustness of the
predictions are presented in the boxplots that
show outliers, interquartile range, and median.
This illustration shows the cross-platform
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generalization of this model and the platforms
that pose more difficulties in prediction.

Node Attention Distribution (PAGA Layer)

Module B

Module C 0.06

Attention Weight

Module D 037

Module E 041

Fig 4. PAGA Layer Attention Weights

Fig 4. demonstrates attention weights obtained
at the PAGA layer when software modules (y-
axis) and hardware nodes (x-axis) are
connected. The low and high values of attention
are denoted by color gradient light yellow to
dark blue (YIGnBu). The darker colors
demonstrate stronger impact of a hardware node
on a software module which marks important
software-hardware interactions. The accuracy
of cell values gives the exact attentions values
that can be viewed in terms of which nodes the
model attends to, to predict the performance
accuracy across the platforms.

4.2 Cross-Platform Temporal Memory Layer
Performance

CPTM layer was successful in capturing the
temporal dynamics of software performance on
different platforms. It simulated dynamic
dependencies in a workload and hardware
behaviour by maintaining a node specific
memory state and updating that state according
to the interactions it has with other nodes. The
temporal embeddings produced enabled the
framework to monitor the changing trends on
implementation and resource utilization as time
goes and make predictions more robust. It was
also enhanced by integration with the PAGA
spatial embeddings to transfer across platforms,
showing that the CPTM layer is critical in

modeling both time-ranging variations in
performance. Generally, it played a very
significant role in making steady, flexible and
precise predictions in various hardware
conditions.

Temporal Prediction of CPU Usage

CPU Usage (%)

—— Actual CPU Usage
— =~ Predicted CPU Usage

0 10 20 30 40 50
Time (s)

Fig 5. Temporal Prediction of CPU Usage

Fig 5. indicates the time prediction of the CPU
usage of a software module over time. The blue
one is the real use of the CPU which is
registered in the platform, and the red dashed
line is the estimated CPU use which is
registered in the CPTM layer. The fact that the
model is able to absorb trends over time is
shown by the fact that the predicted line aligns
with the actual line. The grid offers a guideline
in the time advancement and degree of usage.

Temporal Prediction Error of CPTM Layer

—— Mean Prediction Error
Error Band +10

& o @

Prediction Error (AExecution Time)

N

0 10 20 30 40 50
Time (s)

Fig 6. Temporal Prediction Error of CPTM Layer

Fig 6. demonstrates the time prediction error of
CPTM layer of a software module. The blue line
shows the average prediction error with time;
the shaded light blue area is the band of standard
deviation errors of prediction within the model
i.e. the uncertainty of the prediction of the
model. Peaks on the error line mark the times
where there is more prediction deviation. This
visualization shows how CPTM predictions are
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stable over time and how the uncertainty
changes with time, which can be used to
evaluate robustness of the model over time.

Memory Allocation Dynamics Over Time
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Fig 7. Memory Allocation Dynamics Over Time

Fig 7. depicts the cumulative memory usage of
software module in three platforms with time.
Platform A is represented by the shade of blue,
Platform B by the shade of green, and Platform
C by the shade of orange. The area chart depicts
the accumulating memory usage in the course
of the execution and can be used to compare the
memory efficiency in the platform on which it
is run as well as pointing to points of peak
usage. The overlapping trends can be visually
identified in the shaded areas due to their
transparency, and they can be identified as
difference in platform memory management.

4.3 NSGA-II performance

The NSGA-II algorithm was successful in
optimization of deployment configurations
because it took into account execution time,
energy consumption and memory usage as the
objective measures in the same time frame.
These metrics were selected due to the direct
measure of both software and resource
efficiency that are the essential features of
cross-platform deployment and cost-effective
operation. Using the forecasted results of the
PAGA-CPTM model, NSGA-II was able to find
Pareto-optimal configurations that trade-offs
between the three objectives. The non-
dominated sorting, crossover, and mutation
evolutionary  process  provided  various
candidate solutions, which have shown that
multi-objective optimization can be efficiently

utilized to optimize resource allocation and
ensure high performance and adaptability on a
heterogeneous platform.

Predicted vs Actual Execution Time Across Platforms
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Fig 8. Predicted Vs Actual Execution Time Across
Platforms

Fig.8 indicates projected and real execution
times of various platforms. The colour of each
platform signifies the platform i.e. blue signifies
Platform A, green signifies Platform B, orange
signifies Platform C. The dashed diagonal red
line is a pointer of flawless prediction. The
points that are near the diagonal indicate precise
predictions, and on the contrary, the deviations
indicate mistakes of the model. This scatter plot
shows how the model is able to generalize in
dissimilar computing platforms.

Memory vs Energy Trade-off Across Platforms
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Fig 9. Memory Versus Energy Consumption Across
Platforms
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Fig 9. represents the trade-off between the peak
memory and energy consumption of candidate
deployment configurations. The color of the
points is platform-based, with the blue color
representing Platform A, the green color
representing Platform B and the orange color
representing Platform C. Every point indicates
a candidate configuration that is rated by
NSGA-II. The scatter plot is used to plot the
Pareto front, which illustrates cases in the
lower-left corner where configurations of low
memory usage and energy consumption are
obtained. The described plot provides the
allocation of resources to a variety of platforms
and assists in finding effective solutions to the
optimal cross-platform implementation.
Energy Consumption per Module Across Platforms
350 . Platform A

= Platform B
Platform C

Energy Consumption (Joules)
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v
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Fig 10. Energy Consumption Per Module Across
Platforms.

Fig 10. shows the software modules energy
consumption of the three platforms. Each of the
bars has a blue section that is the energy used by
Platform A, the green section used by Platform
B and the orange section used by Platform C.
Viewed as stacked bars, the cumulative energy
utilization in each module may be visualized
and compared to clearly see the contribution of
each platform to the overall energy
consumption. The total energy of Module A is
maximum and that of Module C is minimum,
indicating that there is variability in the energy
requirements of software components and
efficiency of platforms.

Module Execution Time Distribution

140 [R—
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80
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Fig 11. Module Execution Time Distribution

Fig 11. plots the relative performance of four
software modules (A, B, C, D) on the execution time.
It shows that there is a high level of performance
differences with the highest execution time of
Module C and the most efficient of them is Module
A. This empirical information plays a vital role in
training your machine learning models since by
determining these computational bottlenecks, which
constitute the starting point in the proper prediction
of performance and eventually the optimal
distribution of resources across various platforms.

4.4 Performance Comparison

The performance comparison reveals that the
proposed PAGA-CPTM-NSGA-II  model
significantly  outperforms traditional and
existing machine learning approaches across all
evaluation metrics. These results demonstrate
that integrating  platform-aware  spatial
attention, temporal memory modeling, and
evolutionary optimization ensures robust,
accurate, and resource-efficient cross-platform
performance prediction.

Optimization Algorithm Performance Comparison
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Fig 12. Optimization Convergence Comparison

Fig 12. compares the convergence behavior of
five optimization algorithms — Greedy Search
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(red), Simulated Annealing (cyan), Genetic

Algorithm (green), Particle Swarm
Optimization (blue), and Proposed NSGA-II
(magenta) — across iterations. The y-axis

represents the objective function value (lower is
better), and the x-axis denotes the number of
optimization iterations. The NSGA-II curve
rapidly converges to the lowest objective value,

Table 3. Performance Comparison Across Various Models

showing better stability and faster convergence,
while Greedy and SA exhibit slower
improvements. The color-coding highlights
algorithmic efficiency, with NSGA-II providing
the best trade-off between execution time,
energy, and memory optimization across all
iterations.

Model MAE | RMSE | R? MAPE | Execution Energy Memory Utilization

(%) Time Saving Improvement
Reduction

Random Forest | 0.182 | 0.236 | 0.84 | 1.65 8.5% 6.2 % 51%

[22]

Linear 0.143 |1 0201 | 095 |74 11.7 % 8.4% 6.8 %

Regression [23]

FCNN-DGV [24] | 0.337 | 0.126 | 0.91 | 2.9 16.4 % 14.8 % 9.2 %

LSTM-MLP- 0.126 | 0.178 | 0.92 | 6.1 18.9 % 153 % 10.6 %

NSGA-I11 [25]

Proposed PAGA- | 0.087 | 0.132 | 0.97 | 3.8 26.8 % 23.5% 17.4 %

CPTM-NSGA-II

Table 3. indicates that the proposed PAGA-
CPTM-NSGA-II model has a high predictive
efficiency in all measures. It scores the lowest
MAE (0.087), RMSE (0.132), and the highest R
2 (0.97) and outperforms the baseline models,
namely, Random Forest (MAE = 0.182, R 2 =
0.84) and LSTM-MLP-NSGA-II (MAE =
0.126, R 2 =0.92). In addition to this, the model
presented shows great resource optimization
with an execution time reduction of 26.8% and
energy savings of 23.5% and memory
optimization of 17.4% as compared to all other
methods. All these findings strongly imply the
strong adaptability, increased learning ability,
and high computational efficiency of the model,
making it a more trustworthy and scalable
model compared to the current machine
learning and hybrid models.

4.5 Discussion

The proposed PAGA-CPTM-NSGA-II model is
effective in predicting and optimization of
cross-platform software performance through
the relations of spatial, temporal and
optimization learning. The PAGA layer is used
to capture dependencies between hardware and
software, whereas the CPTM layer is used to
represent the temporal dynamics, making it
possible to predict the performance of a
heterogeneous platform accurately. The NSGA-
I optimizer is an efficient tool in terms of
execution time, energy use and memory usage,
which results in better resource efficiency and
low-cost implementation. The proposed
strategy is more accurate in prediction and
flexible than the traditional one. Nevertheless,
the framework is not scalable since it utilizes
large dataset and is computationally complex in
terms of graph creation and optimization.
Transfer learning, online adaptation, and
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lightweight graph sampling can be involved in
future work to increase scalability and the
applicability to real-time. Also, optimization of
reinforcement learning and explainable Al
integration  will  further enhance the
transparency of decisions and flexibility to
dynamic, multi-platform environments.

5. Conclusion and Future Work

The suggested PAGA-CPTM-NSGA-II
framework is a good solution to the problems of
software performance prediction and resource
optimization in the framework of heterogeneous
computing platforms. The model is able to
predict the execution time, CPU usage, memory
consumption and energy efficiency accurately
by incorporating platform-aware  graph
aggregation, contextual temporal modeling and
multi-objective optimization and it obtains the
most optimum deployment configurations. It
has been shown that experimental analysis can
improve significantly compared to the
traditional machine learning and deep learning
approaches in prediction accuracy, cross-
platform adaptability and optimality. The model
provides reasonable performance and resource
usage ratio, facilitating the sustainable
computing and  cost-efficient  business
processes. Moreover, the proposed solution has
a high-scale factor, and it has a capability to
support numerous workloads and various
platform configurations without negatively
affecting performance. Its usefulness can be
observed as it exists in practical computing
environments in the real-world; it can inform
resource allocation and deployment strategies to
improve the performance and energy
consumption of systems in cloud, GPU, and
mobile infrastructures.

To improve cross-platform adaptability and
scalability of the proposed PAGA-CPTM-
NSGA-II framework, the proposed study will
include transfer learning in future work.
Transfer learning will allow predictive model to
remember already learnt patterns of software-
hardware interaction and adapt effectively to
new or unknown computing conditions with

minimum retraining. The method can greatly
save on computational expenses, and also, high
accuracy of prediction is guaranteed in a variety
of hardware designs. Moreover, it can make the
framework have a greater real-world
applicability by being able to be deployed
quickly in dynamic computing infrastructures in
which performance profiles often change. The
improvement will enhance the generalization
and long-term adaptability of the model to
perform  predictions and optimize its
performance.
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pendix

Algorithm.1 NSGA-11 for Cross-Platform
Deployment Optimization

In

put: metrics = {execution_time, energy,

memory_usage}, N, G, a, 5, y
Output: optimal_solutions

In

itialize population P with N random

deployments

fo

r each individual i in P:
fitness[i] = a * execution_time[i] + f *

energy[i] +y * memory usage[i]

if

in

P is not empty:

sort P into Pareto fronts

calculate crowding_distance for each
dividual

else:

return "Population Initialization Error"

generation =0
while generation < G:

parents = select_parents(P)
offspring = crossover(parents)
mutate(offspring)

for each individual j in offspring:

J Technol Res. 2026;4:880-897.

https://jtr.cit.edu.ly


https://www.kaggle.com/datasets/abdurraziq01/cloud-computing-performance-metrics
https://www.kaggle.com/datasets/abdurraziq01/cloud-computing-performance-metrics

897

Alsubayhay et al

fitness[j] = a * execution_time[j] + p *
energy[j] +y * memory usagelfj]
R = P voffspring
sort R into Pareto fronts
calculate crowding_distance for R
if size(R) > N:
P =select_top_N(R, N)
else:
P=R
generation = generation + 1
end while
if P contains non_dominated_solutions:
optimal_solutions =
extract_non_dominated(P)
else:
optimal_solutions = random_selection(P)
return optimal_solutions

Algorithm 2 : Cross-Platform
Spatiotemporal Performance Prediction

Input: dataset D
Output: predicted_metrics,
optimal_deployment
if D is empty:
return "No data available”
for each record r in D:
if missing_numeric(r):
replace(r, mean_or_median)
if missing_categorical(r):
replace(r, mode)
handle_outliers(r)
normalize_features(D)
extract_features(D, hardware_load,
software_workload)
align_timestamps(D)
G = create_graph(nodes =
{software_modules, hardware}, edges =
dependencies)
assign_node_features(G, workload,
platform)
for each node i in G:
h_i = transform(node_features[i])
for each neighbor j:
alpha_ij = compute_attention(i, j)
h_i_prime = aggregate(alpha_ij,
neighbors)
for each time_step t:
m_i[t] = update_memory(h_i[t-1],
input[t])
for each node j:
beta_ij[t] = temporal_attention(i, j, t)

h_i[t] = aggregate_temporal(beta_ij[t],
h_ift])
z_i =fuse_features(h_i_PAGA, h_i_CPTM,
platform_features)
predicted_metrics = predict(z_i, targets =
{execution_time, CPU, memory, energy})
loss = weighted_MSE(predicted_metrics,
actual_values)
if new_platform_detected:
fine_tune_embeddings(D)
initialize_population(configs, size = N)
generation =0
while generation < G:
for each config c:
fitness[c] = a * execution[c] + f *
energy[c] +y * memory[c]
ranked = non_dominated_sort(fitness)
parents = select_parents(ranked)
offspring = crossover_mutation(parents)
generation = generation + 1
optimal_deployment =
extract_Pareto_solutions(offspring)
deploy(optimal_deployment)
if deviation_detected(metrics):
adjust_resources(optimal_deployment)
return predicted_metrics,
optimal_deployment
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