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ABSTRACT 

Efficient cross-platform performance prediction and resource optimization are critical for deploying 

software applications in heterogeneous computing environments. Existing models often struggle to 

capture complex software–hardware dependencies and evolving workload dynamics, resulting in limited 

prediction accuracy and poor adaptability. To overcome these limitations, this study introduces a unified 

intelligent framework that seamlessly integrates Platform-Aware Graph Attention (PAGA), Cross-

Platform Temporal Memory (CPTM), and NSGA-II optimization. This tri-layer integration uniquely 

combines structural dependency learning, temporal sequence understanding, and multi-objective 

optimization to deliver adaptive and generalizable performance prediction across diverse hardware 

platforms. The model is implemented in Python using PyTorch for deep learning components and 

NumPy/Matplotlib for analysis. Experiments are conducted on a cloud performance dataset (CPU, 

memory, network, energy, execution time, instruction count) from Kaggle. The proposed framework 

achieves high prediction accuracy with MAE = 0.087, RMSE = 0.132, and R² = 0.97, marking a 20–

25% improvement over baseline models. In the optimization stage, NSGA-II achieves 26.8% execution 

time reduction, 23.5% energy saving, and 17.4% memory utilization improvement. These results 

highlight the novelty and effectiveness of the integrated PAGA–CPTM–NSGA-II architecture, 

demonstrating its potential for scalable, resource-efficient, and cross-platform software performance 

management in real-world deployments. 

Keywords: Cross-Platform Performance Prediction, Energy-Efficient Computing, Meta-Learning, Resource 

Utilization Optimization, Software Performance Modelling 
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 ليبيا ،    سلوق ،  المعهد العالي للعلوم والتقنية ،  قسم تقنيات الحاسوب  3
 ليبيا ،   درنة،   جامعة درنة، كلية العلوم،  قسم علوم الحاسوب  4

 

 البحــــــــــــــــــث ملخــــــــــــــــص 
التنبؤ بكفاءة الأداء عبر المنصااات المتنوعة وتحساايم الموارد نعدان مم العوامح الحاساامة لنياار تلبيقات البرمجيات في بيسات الحوساا ة 

.  Random Forest  ،LSTM  ،CNN-LSTMمثح:   اللرق الحالية بما في ذلك نماذج التعلم الآلي التقليدنةتعتبر غير المتجانسة.  
غالً ا ما تفياااااااح في التحقت مم التفاعقت المعقدة بيم البرمجيات والأجهاة وداناميكيات علء العمح الامنية، مما اؤدي إلل الحصاااااااو   

اادم  ج قاة    PAGA–CPTM–NSGA-II علل دقاة تنبؤ غير مثاالياة. لمعاالجاة هايو القيود، نقترذ في هايو الورقاة إجاار عماح جادااد
Platform-Aware Graph Attention (PAGA)    منصاات-لنميجة الاعتمادات الهيكلية وج قة الياكرة الامنية العبر (CPTM) 

لتحساااااااااااااايم متعادد   (NSGA-II) الجينياة غير المههيمناة الثاانياةالترتيال  لالتقاا  التلور الامني الادانااميكي لمقااايد الأداء، وخوارزمياة  
للمكونات العميقة   PyTorch مع Python الأهداف لوقت التنفيي، اسااااااااااااات دام الياكرة، واساااااااااااااتهقس اللاقة. اهنفي النموذج باسااااااااااااات دام

 لمعالجة البيانات والتصاااااااااور. تهجربت التجارب علل مجموعة بيانات لمقاايد تداء الحوسااااااااا ة الساااااااااحابية:    NumPy/Matplotlibو
CPU . نحقت الإجار المقترذ دقة تنبؤ عالية بمعد  خلأ مللت، الياكرة، اليااااا كة، اللاقة، وقت التنفيي، عدد التعليمات (MAE)   قدرو

، مما نمثح تحسااااااناً بنساااااا ة تتراوذ بيم  0.97ابلغ   (R²) ، ومعامح تحداد0.132قدرو   (RMSE) ، وجير متوساااااا  مرطع ال لأ0.087
%،  26.8ان فاضاااً في زمم التنفيي بنساا ة  NSGA-IIوفي مرحلة التحساايم، نحقت خوارزم . % مقارنة بالنماذج الأساااسااية25% و20

. تهظهر هيو النتائ  قدرة الإجار علل التنبؤ  .%17.4%، وتحسااناً في اساات دام الياكرة بنساا ة 23.5وتوفيراً في اسااتهقس اللاقة بنساا ة 
المنصااااااات غير المتجانسااااااة. توفر اللربقة المقترحة حقً قوبًا   عبر  resource-aware  بكفاءة الأداء وتوجيه نياااااار الموارد بيااااااكح وا 

 .وقابقً للتوسع وقابقً للتفسير، مع خلت فرص لل حث المستقبلي في تحسيم البرمجيات في الوقت الحقيقي بيكح تكيفي

الدا  بأداء الأنظمة عبر المنصات  ة:لالكلمات  التعلم فوقي )الميتا    ، التنبؤ  الكفاءة في استهلاك الطاقة،  تعلم( ، تحسين   - الحوسبة ذات 

    .، نمذجة أداء البرمجيات استخدام الموارد

 

 

1. INTRODUCTION 

The rapid growth of cloud computing and non-

homogeneous hardware has rendered 

forecasting software performance in the variety 

of platforms extremely complex [1]. Change in 

CPU capacity, memory hierarchy, and network 

architecture leads to variation in the execution 

time, energy consumption and usage of 

resources [2]. Conventional rule-based 

prediction systems do not represent such 

dynamic software-hardware interactions and 

therefore fail to give accurate predictions and 

waste resources [3], [4]. Dependence on other 

modules and temporal variation are additional 

complicates of performance analysis as the 

workloads change and modules of software 

interact with various hardware components [5], 

[6]. Machine learning can provide a powerful 

answer through learning an irregular 

dependence between system behaviour and 

workloads [7], [8]. Inter-module dependencies 

can be represented by graph-based and temporal 

models and the changing performance trends 

with time, enhancing the accuracy of prediction 

[9], [10]. Furthermore, to make deployment 

optimal, one should balance several goals, e.g., 

to minimize the time of execution, the use of 

memory, and usage of energy [11]. Multi-

objective optimization algorithms are able to 

find effective configurations that optimize 

performance and limits overhead [12], [13]. The 
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generalization of models to unseen 

environments can also be guaranteed through 

cross-platform adaptability. 

1.1 Research Motivation 

The existing models of performance prediction 

are not applicable to modern computing 

environments because they do not emulate the 

dynamic interaction between software and 

hardware layers, resulting in a failure to 

estimate the execution time and allocate 

resources efficiently. This is a weakness that 

restricts system optimization and scalability of 

the heterogeneous platforms. The practical 

significance of this research is to create the 

machine learning-based predictive model that 

will help accurately predict software 

performance in various platforms to allow 

optimal use of the resources and could lead to a 

higher efficiency of operations in the real-life 

setting of the computing process. 

1.2 Significance of the Study 

This study is important because it deals with 

such a severe problem as the necessity of 

precise cross-platform performance forecasts in 

contemporary computing ecosystems. The 

proposed model combines the graph neural 

networks and the temporal memory layers to 

help to capture the intricate interactions of 

software modules and hardware components 

across time. Multi-objective optimization is 

built into the deployment decisions to have the 

effect of balancing the execution time, energy 

consumption, and memory usage to result in 

efficient resource utilization. The results of this 

study can be used to create more sophisticated 

and responsive performance prediction models 

and help to improve the field of cloud 

computing as well as heterogeneous systems 

management. 

1.3 Problem Statement 

The fast evolution of heterogeneous computing 

platforms and complex computing workloads 

have rendered effective performance prediction 

to be a challenging task. The current research 

usually uses a set of static benchmarks or 

regression-based models, which do not 

represent dynamic software-hardware 

interactions and changes in execution patterns 

over time, resulting in inefficient resource 

utilization and suboptimal deployment choices 

[14], [15]. This study manages to address them 

by introducing a unified machine learning 

framework that incorporates both graph-based 

modelling and temporal memory networks, 

along with cross-platform adaptation and multi-

objective optimization. The strategy allows 

specific forecasting of the execution time, 

energy, and memory consumption, which will 

guarantee effective resource management on a 

variety of computing systems. 

1.4 Key Contributions 

• A new deep learning-based hybrid 

framework, PAGA–CPTM–NSGA-II, 

is proposed for accurate cross-platform 

performance prediction and 

optimization of software applications. 

• Introduces a PAGA Layer to effectively 

capture complex software–hardware 

interaction patterns and spatial 

dependencies among computational 

nodes. 

• Develops a CPTM Layer to model 

temporal variations in workload and 

resource utilization, enhancing 

predictive adaptability across 

heterogeneous platforms. 

• Employs NSGA-II to optimize 

performance metrics such as execution 

time, energy consumption, and memory 

utilization, yielding Pareto-optimal 

deployment solutions. 

2. RELATED WORK 

Amaris et al. [15] and Pintye et al. [14] 

examined machine learning-based mechanisms 

of predicting performance and optimizing 

resources in a heterogeneous computing 

platform. Amaris et al. used analytical modeling 
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and Random Forest and Support Vector 

Regression to accurately estimate the time of 

GPU kernel executions based on performance 

metrics of benchmarks with RMSE of 0.21 and 

R- squared equal to 0.94. Pintye et al. proposed 

a reinforcement learning-based framework of 

cloud autoscaling which was trained on the 

CPU, memory, and latency measurements of the 

public cloud traces and enhanced the utilization 

of resources by 18% and minimized the 

overhead by 12%. Taken together, these works 

demonstrate that hybrid analytical-machine 

learning models can enhance accuracy and 

efficiency in the context of both GPU and cloud 

environments, but it is still difficult to sustain 

generalization in the case of a wide range of 

workloads. 

De Filippo et al. [16] suggested a machine 

learning method to estimate the execution time 

of the COSMO meteorological simulation 

software. Data on historical performance in 

simulation and execution logs were used to train 

regression and ensemble models in the study. 

Random Forest and Gradient Boosting gave 

good results, with MAE of 0.34, and RMSE of 

0.42. The shortcoming was decreased 

adaptability to the invisible hardware layouts 

and the complicated patterns of paralleling 

execution. 

Cordeiro-Costas et al. [17] suggested an NSGA-

II-based hybrid LSTM-MLP prediction model 

in building shorthand energy management. It 

included hourly occupancy data, temperature 

data, and hourly energy consumption data. Deep 

learning with evolutionary optimization 

resulted in 15 percentage point energy 

efficiency. The model had RMSE of 0.126 and 

a R 2 of 0.983 and was highly computing power 

intensive thus less viable in the low-resource 

environment and could not be used in real-time. 

Kumar et al. [18] introduced a transfer learning-

based cross-platform performance prediction 

model based on machine learning to further 

improve generalization. The data set contained 

logs of runtime and energy consumptions of 

heterogeneous computing platforms. Solutions 

like domain adaptation and regression learning 

were applied. The model obtained MAE=0.27 

and RMSE=,0.33 in unseen platforms though 

high variability workloads needed fine tuning. 

Rua and Saraiva [19] suggested mass empirical 

research that would measure the performance of 

mobile applications regarding energy and 

runtime and memory efficiency. Statistical 

analysis and regression indicated that there were 

important power-performance trade-offs. The 

model predicted energy with an R 2 of 0.91, 

however, the heterogeneity of the devices and 

the inconsistency of apps could not be 

universalized. 

Ford and Zong [20] suggested PortAuthority, a 

dynamic program analysis framework that was 

proposed as a means of introducing energy 

efficiency analysis to cross-platform 

development. The research involved the use of 

benchmark programs that were run on different 

systems in order to compare energy and CPU 

efficiency. It used runtime analysis and profile 

analysis to profile the patterns of power 

consumption. The framework minimized the 

average energy consumption by 11 percent, yet, 

it lacked predictive power and used nearly 

solely the execution-level profiling. 

The literature review points out the necessity of 

proper performance prediction and optimization 

in heterogeneous computing settings. 

Forecasting machine learning models and 

methods have been used to predict the time 

taken by an execution of a GPU kernel, cloud 

autoscaling, and simulations of weather 

conditions, with a focus on performance and 

flexibility. Such multi-objective models as 

NSGA-II and transfer learning techniques are 

used to increase cross-platform prediction and 

empirical studies of energy and run-time help to 

maximise software performance and resource 

use on various computational platforms. 

3. Proposed Spatiotemporal Graph 

Attention Network for Cross-Platform 

Performance Prediction 
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 The proposed approach gives a systematic 

model that seeks to predict, optimize, as well as 

deploy the software applications efficiently on 

heterogeneous computing platforms. It 

combines the modelling based on data, 

spatiotemporal learning about graphs and multi-

objective optimization to describe the software-

hardware dependence and dynamic workload 

behaviours. This is initiated by data collection 

 and pre-processing, then structure of a graph 

constituting interactions between software 

modules and hardware components. Learning 

of space and time PAGA and CPTM. Lastly, the 

multi-metric prediction, optimization, and 

deployment can be used to guarantee efficient 

use of resources across platforms. Fig. 1 

represents the entire workflow. 

 

Fig 1. Workflow of the Proposed Model 

3.1 Data Collection 

The study uses the Kaggle Cloud Computing 

Performance Metrics[21], data that records 

heterogeneous behaviour of software 

applications in the platform. The data are CPU 

utilization, memory usage and network traffic, 

power consumption, execution time, and the 

number of executed instructions, workload 

descriptors and platform metadata. These 

measures are the interplay of software modules 

and hardware resources in diverse workload and 

configurations. Temporal modelling of 

performance dynamics can be achieved by use 

of time-stamped records. Such multi-

dimensional data can then be collected, which is 

the basis of building software-hardware graphs, 

deriving useful node and edge features, and 

training higher-level spatiotemporal models to 

be precise in predicting cross-platform 

performance. Table 1 provides a sample of such 

data with some of the most important metrics 

and task descriptions. 

 

Table.1 Dataset Description 

CPU 

Usage 

Memory 

Usage 

Network 

Traffic 

Power 

Consumption 

Num Executed 

Instructions 

Execution 

Time 

Energy 

Efficiency 

54.88 78.95 164.78 287.81 7527 69.35 0.55 

71.52 29.90 184.23 362.27 5348 41.40 0.35 

55.82 92.71 203.67 231.47 5483 24.60 0.80 

54.49 88.10 184.23 195.64 5876 16.46 0.53 

42.37 72.42 184.23 359.45 3361 55.31 0.35 

3.2 Data Preprocessing 

Pre-processing attempts to convert raw cloud 

computing performance data into a clean and 

consistent and structured format that is suitable 

to spatiotemporal modelling. It supports the 
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missing values, outliers, as well as 

heterogeneous measures, and derives 

significant software and hardware features. 

Temporal alignment can guarantee the 

performance dynamics in sequences, which can 

be predictable precisely cross-platform by 

sophisticated GNN and temporal model. 

3.2.1 Data Cleaning 

Data cleaning is used to solve problems such as 

missing values, outliers, and inconsistent time. 

The mean or the median of the corresponding 

column is used to impute numeric missing 

values (CPU, memory, execution time). 

Categorical values (type of task, status) are 

filled with a mode. Z-score or interquartile 

range (IQR) is used to identify outliers that are 

either capped or eliminated. The consistency of 

timestamps is achieved by putting all records 

into a unified data time form and sorting them 

in order. Adequate cleaning helps in avoiding 

model bias, providing stable training and also 

preserving consistency of cross platform 

performance patterns in a variety of workloads 

and hardware settings. 

3.2.2 Normalization 

Normalization is used to convert heterogenous 

numerical measurements to a shared scale so 

that large-valued features will not prevail and to 

enhance convergence of the model. The aspect 

of CPU utilization, memory, execution time and 

energy efficiency are very important to make 

sure that features are balanced when learning 

through spatial and temporal encoders. 

𝑥′ =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
                       (1) 

In eqn. (1), 𝑥is the original feature value, 

𝑥𝑚𝑖𝑛and 𝑥𝑚𝑎𝑥are column-wise minimum and 

maximum, and 𝑥′is the normalized value 

between 0 and 1. 

3.2.3 Feature Extraction 

The feature extraction transforms raw metrics 

into meaningful ones to the model. Hardware 

load is a parameter that is used to denote the 

consumption of resources in terms of CPU and 

memory usage. Software workload is used to 

measure the execution time and number of 

instructions and characterizes application 

behaviour. The node features of the Spatial 

Encoder (GAT) are encoded as platform 

metadata (type of task, its priority, and VM ID). 

These features extracted enable the model to 

acquire how the various software tasks relate to 

hardware usage patterns. Proper feature 

engineering: This guarantees that software 

behaviour and platform characteristics are both 

represented so that cross platform performance 

can be predicted correctly. 

3.2.4 Temporal Alignment 

Temporal alignment groups the data into series 

in order to model time behaviour. The 

timestamps are utilized to build ordered 

sequences that have set window sizes that can 

be used with CPTM Layer. The snapshots of 

each sequence contain a set of performance 

snapshots with time dependencies. Just to have 

continuity, missing times are interpolated or 

forward-filled. This process enables the 

temporal encoder to acquire the dynamics of 

performance measures with different workloads 

and hardware settings. Correct alignment 

guarantees the sequential patterns are 

successfully picked to enhance the capability of 

the model in forecasting future dynamics of 

cross-platform performance. 

3.3 Cross-Platform Graph Modelling 

This step is an input to a software-hardware 

graph, which is the representation of the 

interactions between software modules and 

hardware components. Nodes are associated 

with software functions or modules and 

hardware components like CPU, memory and 

network interfaces. Dependency relationships 

or shared resource usage is represented by edges 

which show how software tasks are related with 

hardware resources. The features of every node 

correspond to workload (e.g., number of 

instructions executed, batch size), hardware 

usage (CPU, memory, network I/O 

percentages), and platform-specific (server, 
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cores, memory capacity) features. This directed 

graph enables the spatial encoder (GAT) to 

learn meaningful node representations as well 

as learn platform relational dependencies. The 

adjacency A is a mathematically expressed 

adjacency graph. 

𝐴𝑖𝑗 =

{
1, if  𝑖 and  𝑗 share a dependency or resource

0, otherwise
 (2) 

In eqn. (2), 𝐴𝑖𝑗denotes whether nodes 𝑖and 𝑗are 

connected. A value of 1 indicates a dependency 

or resource-sharing relationship, while 0 

represents no connection, defining the graph 

structure for GAT learning. 

3.4 Spatiotemporal Feature Learning 

The Spatiotemporal Feature Learning learns 

both the spatial and temporal information in 

cloud computing performance data. The spatial 

component describes the relations between 

software modules and hardware resources 

whereas the temporal component acquires 

patterns within a heterogeneous platform across 

time. They can produce enriched embeddings 

together which allow predicting cross platform 

performance with correct accuracy across 

various measures.  

 

Fig 2. Spatiotemporal Architecture 

Fig. 2. shows the workflow of the PAGA-

CPTM-NSGA-II model developed to predict 

and optimize cross-platform performance. It 

starts with the performance input data that goes 

through a Convolutional (Conv) Layer to 

identify low-level spatial patterns. The Spatial 

Encoding Block has a Graph Attention Layer, 

which represents inter-feature interactions, a 

Platform-Aware Attention Layer, which uses 

hardware-specific context, and a Graph 

Aggregation Layer, which consolidates the 

representations of nodes. It encodes time 

dependence data with the help of Temporal 

Attention Layer and a Cross-Platform Temporal 

Memory (CPTM) module, which encodes both 

sequential and cross platform dynamics, and 

finally performs Temporal Aggregation to 

summarize the data. The results are then 

presented into the Fully Connected (FC) Layer 

and Layer Normalization to refine the feature, 

and finally the Prediction Layer produces the 

best performance measures. 
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3.4.1 Spatial Encoding with PAGA 

The PAGA Layer is a platform interaction 

model of software modules and hardware 

components in heterogeneous platforms. Every 

node denotes either a software or hardware 

component and an edge denotes dependence or 

resource. The features of the nodes encompass 

workload metrics (CPU, memory, execution 

time), hardware utilization and platform 

metadata. The layer calculates attention 

coefficients to weigh neighbour influence and 

the use of platform specific information, and 

outputs spatial embeddings which formulate 

important dependencies of cross platform 

performance prediction, as represented in (3) 

ℎ𝑖
(𝑙)

= 𝑊(𝑙)𝑥𝑖                      (3) 

This transforms the raw input features 𝑥𝑖of node 

𝑖into a learnable embedding ℎ𝑖
(𝑙)

at layer 𝑙. The 

weight matrix 𝑊(𝑙)is learned during training, 

enabling the model to capture complex 

interactions between workload metrics and 

hardware usage. 

𝛼𝑖𝑗 =
exp⁡(LeakyReLU(𝑎𝑇[ℎ𝑖∥ℎ𝑗∥𝑃𝑖∥𝑃𝑗]))

∑ exp𝑘∈𝒩(𝑖) ⁡(LeakyReLU(𝑎𝑇[ℎ𝑖∥ℎ𝑘∥𝑃𝑖∥𝑃𝑘]))
  (4) 

In eqn. (4), attention coefficient 𝛼𝑖𝑗measures 

the importance of neighbor 𝑗for node 𝑖. Here, 

ℎ𝑖and ℎ𝑗are node embeddings, 𝑃𝑖and 𝑃𝑗are 

platform metadata, 𝒩(𝑖)represents the 

neighbors of 𝑖, and LeakyReLU adds non-

linearity. The softmax ensures normalization 

across neighbours., as represented in (5). 

ℎ𝑖
′ = 𝜎(∑ 𝛼𝑖𝑗ℎ𝑗

𝑗∈𝒩(𝑖)
)                (5) 

The updated embedding ℎ𝑖
′aggregates the 

neighbor embeddings ℎ𝑗weighted by attention 

𝛼𝑖𝑗. The activation function 𝜎(e.g., ReLU) 

introduces non-linearity. The step captures 

platform conscious spatial dependencies, in a 

way that yields enhanced node representations 

to the downstream cross-platform prediction of 

performance tasks. 

3.4.2 Temporal Encoding with Cross-Platform 

Temporal Memory 

The CPTM Layer measures the time dynamics 

of performance of software applications on 

heterogeneous platforms. It simulates the 

effects of executions in the past, changes in 

work load and the use of hardware on future 

performance. The historical states of each node 

are stored in a temporal memory, which is 

interacting with time-stamped streams of 

software and hardware metrics. This allows the 

network to develop long-term dependencies and 

platform-specific time-dependent patterns that 

can be used to predict the cross-platform 

performance accurately. 

𝑚𝑖
(𝑡)

= 𝑓memory(ℎ𝑖
(𝑡−1)

, 𝑥𝑖
(𝑡)
)             (6) 

In eqn. (6) 𝑚𝑖
(𝑡)

combines the previous node 

embedding ℎ𝑖
(𝑡−1)

with the current input features 

𝑥𝑖
(𝑡)

using a learnable function 𝑓memory. This 

enables the model to remember the important 

past experiences besides incorporating the new 

observational ones. 

𝛽𝑖𝑗
(𝑡)

=
exp⁡(LeakyReLU(𝑏𝑇[𝑚𝑖

(𝑡)
∥𝑚𝑗

(𝑡)
∥𝑃𝑖∥𝑃𝑗]))

∑ exp𝑘∈𝒩(𝑖) ⁡(LeakyReLU(𝑏𝑇[𝑚
𝑖
(𝑡)
∥𝑚𝑘

(𝑡)
∥𝑃𝑖∥𝑃𝑘]))

 

(7) 

In eqn. (7) 𝛽𝑖𝑗
(𝑡)

weighs the influence of neighbor 

𝑗on node 𝑖at time 𝑡. Here, 𝑚𝑖
(𝑡)

and 𝑚𝑗
(𝑡)

are 

temporal memories, 𝑃𝑖and 𝑃𝑗are platform 

metadata, and 𝒩(𝑖)represents neighbors. The 

SoftMax normalization ensures that there is the 

right allocation of attention among the 

neighbours. 

ℎ𝑖
(𝑡)′

= 𝜎(∑ 𝛽𝑖𝑗
(𝑡)
𝑚𝑗

(𝑡)

𝑗∈𝒩(𝑖)
)   

In eqn. (8) ℎ𝑖
(𝑡)′

aggregates neighbor memories 

weighted by attention 𝛽𝑖𝑗
(𝑡)

. The activation 

𝜎introduces non-linearity, allowing the model 

to capture long-term temporal dependencies and 

platform-aware dynamics, which are crucial for 

cross-platform performance prediction. 

3.5 Cross-Modal Embedding Integration 
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This step combines both spatial embeddings of 

PAGA Layer and temporal embeddings of 

CPTM Layer. The embeddings represent other 

complementary features of software 

performance: spatial dependencies between 

software modules and hardware components, 

and temporal dynamics with time. Other 

platform metadata and workload descriptors 

(e.g. CPU type, memory capacity, task type) are 

appended to the node representation to make it 

richer. The composite features are transferred in 

fully connected layers to form complete 

embeddings that are input to the downstream 

prediction task to allow predicting accurate 

cross-platform performance. 

𝑧𝑖 = 𝜎(𝑊𝑓[ℎ𝑖
PAGA ∥ ℎ𝑖

CPTM ∥ 𝑓𝑖
meta] + 𝑏𝑓)         

(9) 

In eqn. (9), 𝑧𝑖is the fused embedding for node 𝑖, 

ℎ𝑖
PAGAis the spatial embedding, ℎ𝑖

CPTMis the 

temporal embedding, 𝑓𝑖
metarepresents platform 

and workload descriptors, 𝑊𝑓and 𝑏𝑓are 

learnable weights and bias, and 𝜎is a non-linear 

activation function (e.g., ReLU). 

The combination of spatial, temporal and 

platform specific information in the model 

provides the benefit of utilizing all three 

simultaneously to create complete embeddings 

that represent the entire range of cross-platform 

performance dynamics. 

3.6 Multi-Metric Prediction 

Multi-Metric Prediction step is to predict 

multiple metrics of software applications at the 

same time, not the individual ones. These 

metrics are time of execution, CPU 

consumption, memory consumption and energy 

consumption, which combined together 

represent the general performance and resource 

use of the application on heterogeneous 

platform. The model can learn correlations and 

interactions to predict performance aspects by 

predicting them together in an improved way, 

which improves the accuracy and strength of 

predictions. 

ℒ = ∑ 𝑤𝑘
𝑀
𝑘=1 ⋅

1

𝑁
∑ (𝑦𝑖

(𝑘)
− 𝑦̂𝑖

(𝑘)
)2

𝑁

𝑖=1
      (10) 

In eqn. (10), ℒis the weighted mean squared 

error (MSE) loss, 𝑀is the number of metrics, 

𝑁is the number of samples, 𝑦𝑖
(𝑘)

is the true value 

of metric 𝑘for sample 𝑖, 𝑦̂𝑖
(𝑘)

is the predicted 

value, and 𝑤𝑘is the weight assigned to metric 

𝑘to balance their contribution. 

This weighted MSE loss ensures that all metrics 

are learned appropriately, giving priority to 

more critical metrics if needed. It allows the 

model to simultaneously optimize predictions 

across multiple dimensions, capturing complex 

trade-offs in performance, resource utilization, 

and energy efficiency. 

3.7 Cross-Platform Adaptation 

The Cross-Platform Adaptation step ensures 

that the model can generalize effectively across 

different hardware and software configurations. 

Software applications often behave differently 

depending on CPU types, memory capacities, 

network conditions, or virtualization 

environments. This step uses platform metadata 

embeddings and the spatial-temporal patterns 

learned by the model to adapt predictions for 

new platforms. Techniques such as domain 

adaptation, transfer learning, or fine-tuning on a 

small subset of target platform data can be 

applied. This ensures the model remains robust 

and scalable, providing accurate performance 

predictions across heterogeneous platforms 

without retraining from scratch. 

3.8 Optimization of Cross-Platform 

Deployment Using NSGA-II  

The optimization objective is formulated as a 

fitness function, which combines multiple 

predicted metrics into a single measure of 

deployment efficiency is represented in (11). 

𝑈 = 𝛼 ⋅ execution_time + 𝛽 ⋅ energy+ 𝛾 ⋅

memory_usage   (11) 

Here, 𝑈 represents the overall utility or cost 

function to minimize, while 𝛼, 𝛽, and 𝛾are 

weight factors reflecting the relative importance 
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of each metric. The performance speed is 

represented by the execution time, energy 

consumption measures efficiency, and resource 

consumption is measured by memory usage. 

Algorithm.1 is the optimization of cross-

platform implementation which evolves 

populations, applies non-dominated sorting, 

and comes up with Pareto-optimal solutions that 

balance between the execution, energy, and 

memory. 

3.9 Cross-Platform Deployment 

The Cross-Platform Deployment step is the 

implementation of the software modules on the 

determined optimal hardware platforms based 

on the optimization of NSGA-II. By this phase, 

the deployment has ensured that any given 

module is allocated to a platform that strikes a 

balance on the execution time, CPU and 

memory consumption, and power consumption. 

This step is able to modify software execution 

to fit across server types, cores and memory 

capacities, by taking into consideration 

platform heterogeneity, and ensure consistency 

in performance across environments. Dynamic 

adjustments can be made through real-time 

monitoring in case actual metrics do not 

correspond to the predictions to ensure the 

efficient use of resources, minimum energy 

consumption, and the stability of execution at 

the same time in several platforms. 

The prediction of software on heterogeneous 

platforms using spatiotemporal embeddings of 

PAGA and CPTM are estimated by 

Algorithm.2. It combines spatial, temporal and 

platform metadata to predict execution metrics 

and optimizes the deployment decision with 

NSGA-II making sure to efficiently use 

resources, consume less energy and achieve 

equilibrium between execution among 

platforms. 

The proposed methodology presents a new 

combination of space and time models in the 

prediction of software performance on cross-

platforms. The framework incorporates the 

PAGA and CPTM layer in order to learn inter-

module dependencies and the temporal patterns 

in the long run. Moreover, the combination of 

workload and platform metadata provides 

greater flexibility in heterogeneous 

environments, and prediction is converted into 

practical deployment decisions with the help of 

the optimization of NSGA-II. Platform-aware 

multi-level performance prediction This is a 

multi-level approach that guarantees scalable, 

efficient and correct performance prediction, as 

compared to traditional single-platform, or 

purely temporal / spatial models, which offers a 

distinctive solution to cross-platform software 

optimization. 

4. RESULTS AND DISCUSSION 

The proposed PAGA-CPTM model managed to 

model both space and time dependencies on 

heterogeneous computing systems and thus 

forecast the performance of different systems in 

an accurate and generalized manner. The graph 

attention mechanisms as well as the temporal 

memory modelling contributed to the 

functionality of the system to capture software-

hardware interactions which are complex. The 

combination of the learnt embeddings with the 

NSGA-II optimization algorithm delivered 

equilibrium resourcing plans, exhibiting 

enhanced flexibility towards hitherto unnoticed 

platforms. Experimental analysis proved that 

the suggested method reached a stable 

prediction behaviour and a predictable 

optimization result, which proved the prospects 

of an efficient cross platform implementation 

and smart use of resources in a variety of 

computing environments. 

Table 2. Simulation Parameter 

Parameter Value 

Time Window 10–50 timestamps per run 

Attention Heads 4 
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Node Embedding Dim 128 

Activation ReLU 

Memory Size 128 

Temporal Module Transformer 

Sequence Length 50 

Hidden Layers 2 

Hidden Dim 256 

Output Nodes 4 

Loss Function Weighted MSE 

Population Size 50 

Generations 100 

Crossover Probability 0.8 

Mutation Probability 0.1 

Optimizer AdamW 

Learning Rate 3e-4 

Batch Size 64 

Epochs 50–150 

Table 2 provide brief details of the main 

simulation and training parameters that are to be 

used to execute the proposed PAGA -CPTM-

NSGA-II framework. It has parameters of the 

spatial and temporal encoder layers, attention 

mechanisms, memory modules and network 

architecture and parameters of the optimization 

algorithm, learning process, and training 

schedule. These values have been chosen so that 

there is stable convergence, effective 

representation learning and efficient multi-

objective optimization on heterogeneous 

platforms. The structure is designed to allow a 

balance between the computation speed and 

model performance, which offers a 

standardized environment in which the 

suggested methodology can be reproducible and 

evaluated. 

4.1 Platform-Aware Graph Attention Layer 

Performance 

The PAGA layer proved to have an excellent 

capability of capturing software-hardware 

interaction and platform specific dependencies 

in heterogeneous computing environments. It 

prioritizes attention on the relevant nodes, 

which in effect identified crucial relationship 

between software modules and hardware 

composites to make more informative 

embeddings to do host prediction. The acquired 

spatial representations enhanced the model with 

the knowledge of structural dependencies not 

through explicit feature engineering but a strong 

basis of temporal modelling. Combination with 

the CPTM layer also boosted further dynamic 

performance tracking demonstrating that the 

PAGA layer on its own is an important player 

in generalization and cross-platform flexibility, 

and thus, a significant player in the accurate and 

efficient performance prediction. 

 

Fig 3. Cross-Platform Prediction Error Distribution 

Fig 3. shows prediction error distribution in 

various platforms based on the Leave-One-

Platform-Out assessment. The individual 

platforms are color-coded sky blue (Platform 

A), light green (Platform B), and orange 

(Platform C). Variability and robustness of the 

predictions are presented in the boxplots that 

show outliers, interquartile range, and median. 

This illustration shows the cross-platform 
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generalization of this model and the platforms 

that pose more difficulties in prediction. 

 

Fig 4. PAGA Layer Attention Weights 

Fig 4. demonstrates attention weights obtained 

at the PAGA layer when software modules (y-

axis) and hardware nodes (x-axis) are 

connected. The low and high values of attention 

are denoted by color gradient light yellow to 

dark blue (YlGnBu). The darker colors 

demonstrate stronger impact of a hardware node 

on a software module which marks important 

software-hardware interactions. The accuracy 

of cell values gives the exact attentions values 

that can be viewed in terms of which nodes the 

model attends to, to predict the performance 

accuracy across the platforms. 

4.2 Cross-Platform Temporal Memory Layer 

Performance 

CPTM layer was successful in capturing the 

temporal dynamics of software performance on 

different platforms. It simulated dynamic 

dependencies in a workload and hardware 

behaviour by maintaining a node specific 

memory state and updating that state according 

to the interactions it has with other nodes. The 

temporal embeddings produced enabled the 

framework to monitor the changing trends on 

implementation and resource utilization as time 

goes and make predictions more robust. It was 

also enhanced by integration with the PAGA 

spatial embeddings to transfer across platforms, 

showing that the CPTM layer is critical in 

modeling both time-ranging variations in 

performance. Generally, it played a very 

significant role in making steady, flexible and 

precise predictions in various hardware 

conditions. 

 

Fig 5. Temporal Prediction of CPU Usage 

Fig 5. indicates the time prediction of the CPU 

usage of a software module over time. The blue 

one is the real use of the CPU which is 

registered in the platform, and the red dashed 

line is the estimated CPU use which is 

registered in the CPTM layer. The fact that the 

model is able to absorb trends over time is 

shown by the fact that the predicted line aligns 

with the actual line. The grid offers a guideline 

in the time advancement and degree of usage. 

 

Fig 6. Temporal Prediction Error of CPTM Layer 

Fig 6. demonstrates the time prediction error of 

CPTM layer of a software module. The blue line 

shows the average prediction error with time; 

the shaded light blue area is the band of standard 

deviation errors of prediction within the model 

i.e. the uncertainty of the prediction of the 

model. Peaks on the error line mark the times 

where there is more prediction deviation. This 

visualization shows how CPTM predictions are 
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stable over time and how the uncertainty 

changes with time, which can be used to 

evaluate robustness of the model over time. 

 

Fig 7. Memory Allocation Dynamics Over Time 

Fig 7. depicts the cumulative memory usage of 

software module in three platforms with time. 

Platform A is represented by the shade of blue, 

Platform B by the shade of green, and Platform 

C by the shade of orange. The area chart depicts 

the accumulating memory usage in the course 

of the execution and can be used to compare the 

memory efficiency in the platform on which it 

is run as well as pointing to points of peak 

usage. The overlapping trends can be visually 

identified in the shaded areas due to their 

transparency, and they can be identified as 

difference in platform memory management. 

4.3 NSGA-II performance 

The NSGA-II algorithm was successful in 

optimization of deployment configurations 

because it took into account execution time, 

energy consumption and memory usage as the 

objective measures in the same time frame. 

These metrics were selected due to the direct 

measure of both software and resource 

efficiency that are the essential features of 

cross-platform deployment and cost-effective 

operation. Using the forecasted results of the 

PAGA-CPTM model, NSGA-II was able to find 

Pareto-optimal configurations that trade-offs 

between the three objectives. The non-

dominated sorting, crossover, and mutation 

evolutionary process provided various 

candidate solutions, which have shown that 

multi-objective optimization can be efficiently 

utilized to optimize resource allocation and 

ensure high performance and adaptability on a 

heterogeneous platform. 

 

Fig 8. Predicted Vs Actual Execution Time Across 

Platforms 

Fig.8 indicates projected and real execution 

times of various platforms. The colour of each 

platform signifies the platform i.e. blue signifies 

Platform A, green signifies Platform B, orange 

signifies Platform C. The dashed diagonal red 

line is a pointer of flawless prediction. The 

points that are near the diagonal indicate precise 

predictions, and on the contrary, the deviations 

indicate mistakes of the model. This scatter plot 

shows how the model is able to generalize in 

dissimilar computing platforms. 

Fig 9. Memory Versus Energy Consumption Across 

Platforms 
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Fig 9. represents the trade-off between the peak 

memory and energy consumption of candidate 

deployment configurations. The color of the 

points is platform-based, with the blue color 

representing Platform A, the green color 

representing Platform B and the orange color 

representing Platform C. Every point indicates 

a candidate configuration that is rated by 

NSGA-II. The scatter plot is used to plot the 

Pareto front, which illustrates cases in the 

lower-left corner where configurations of low 

memory usage and energy consumption are 

obtained. The described plot provides the 

allocation of resources to a variety of platforms 

and assists in finding effective solutions to the 

optimal cross-platform implementation. 

 

Fig 10. Energy Consumption Per Module Across 

Platforms. 

Fig 10. shows the software modules energy 

consumption of the three platforms. Each of the 

bars has a blue section that is the energy used by  

Platform A, the green section used by Platform 

B and the orange section used by Platform C. 

Viewed as stacked bars, the cumulative energy 

utilization in each module may be visualized 

and compared to clearly see the contribution of 

each platform to the overall energy 

consumption. The total energy of Module A is 

maximum and that of Module C is minimum, 

indicating that there is variability in the energy 

requirements of software components and 

efficiency of platforms. 

Fig 11. Module Execution Time Distribution 

Fig 11. plots the relative performance of four 

software modules (A, B, C, D) on the execution time. 

It shows that there is a high level of performance 

differences with the highest execution time of 

Module C and the most efficient of them is Module 

A. This empirical information plays a vital role in 

training your machine learning models since by 

determining these computational bottlenecks, which 

constitute the starting point in the proper prediction 

of performance and eventually the optimal 

distribution of resources across various platforms. 

4.4 Performance Comparison 

The performance comparison reveals that the 

proposed PAGA–CPTM–NSGA-II model 

significantly outperforms traditional and 

existing machine learning approaches across all 

evaluation metrics. These results demonstrate 

that integrating platform-aware spatial 

attention, temporal memory modeling, and 

evolutionary optimization ensures robust, 

accurate, and resource-efficient cross-platform 

performance prediction. 

 

Fig 12. Optimization Convergence Comparison 

Fig 12. compares the convergence behavior of 

five optimization algorithms — Greedy Search 
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(red), Simulated Annealing (cyan), Genetic 

Algorithm (green), Particle Swarm 

Optimization (blue), and Proposed NSGA-II 

(magenta) — across iterations. The y-axis 

represents the objective function value (lower is 

better), and the x-axis denotes the number of 

optimization iterations. The NSGA-II curve 

rapidly converges to the lowest objective value, 

showing better stability and faster convergence, 

while Greedy and SA exhibit slower 

improvements. The color-coding highlights 

algorithmic efficiency, with NSGA-II providing 

the best trade-off between execution time, 

energy, and memory optimization across all 

iterations.

 

Table 3. Performance Comparison Across Various Models 

Model MAE  RMSE  R²  MAPE 

(%)  

Execution 

Time 

Reduction  

Energy 

Saving  

Memory Utilization 

Improvement  

Random Forest 

[22] 

0.182 0.236 0.84 1.65 8.5 % 6.2 % 5.1 % 

Linear 

Regression [23] 

0.143 0.201 0.95 7.4 11.7 % 8.4 % 6.8 % 

FCNN-DGV [24] 0.337 0.126 0.91 2.9 16.4 % 14.8 % 9.2 % 

LSTM-MLP-

NSGA-II [25] 

0.126 0.178 0.92 6.1 18.9 % 15.3 % 10.6 % 

Proposed PAGA–

CPTM–NSGA-II 

0.087 0.132 0.97 3.8 26.8 % 23.5 % 17.4 % 

Table 3. indicates that the proposed PAGA-

CPTM-NSGA-II model has a high predictive 

efficiency in all measures. It scores the lowest 

MAE (0.087), RMSE (0.132), and the highest R 

2 (0.97) and outperforms the baseline models, 

namely, Random Forest (MAE = 0.182, R 2 = 

0.84) and LSTM-MLP-NSGA-II (MAE = 

0.126, R 2 = 0.92). In addition to this, the model 

presented shows great resource optimization 

with an execution time reduction of 26.8% and 

energy savings of 23.5% and memory 

optimization of 17.4% as compared to all other 

methods. All these findings strongly imply the 

strong adaptability, increased learning ability, 

and high computational efficiency of the model, 

making it a more trustworthy and scalable 

model compared to the current machine 

learning and hybrid models. 

4.5 Discussion 

The proposed PAGA-CPTM-NSGA-II model is 

effective in predicting and optimization of 

cross-platform software performance through 

the relations of spatial, temporal and 

optimization learning. The PAGA layer is used 

to capture dependencies between hardware and 

software, whereas the CPTM layer is used to 

represent the temporal dynamics, making it 

possible to predict the performance of a 

heterogeneous platform accurately. The NSGA-

II optimizer is an efficient tool in terms of 

execution time, energy use and memory usage, 

which results in better resource efficiency and 

low-cost implementation. The proposed 

strategy is more accurate in prediction and 

flexible than the traditional one. Nevertheless, 

the framework is not scalable since it utilizes 

large dataset and is computationally complex in 

terms of graph creation and optimization. 

Transfer learning, online adaptation, and 
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lightweight graph sampling can be involved in 

future work to increase scalability and the 

applicability to real-time. Also, optimization of 

reinforcement learning and explainable AI 

integration will further enhance the 

transparency of decisions and flexibility to 

dynamic, multi-platform environments. 

5. Conclusion and Future Work 

The suggested PAGA-CPTM-NSGA-II 

framework is a good solution to the problems of 

software performance prediction and resource 

optimization in the framework of heterogeneous 

computing platforms. The model is able to 

predict the execution time, CPU usage, memory 

consumption and energy efficiency accurately 

by incorporating platform-aware graph 

aggregation, contextual temporal modeling and 

multi-objective optimization and it obtains the 

most optimum deployment configurations. It 

has been shown that experimental analysis can 

improve significantly compared to the 

traditional machine learning and deep learning 

approaches in prediction accuracy, cross-

platform adaptability and optimality. The model 

provides reasonable performance and resource 

usage ratio, facilitating the sustainable 

computing and cost-efficient business 

processes. Moreover, the proposed solution has 

a high-scale factor, and it has a capability to 

support numerous workloads and various 

platform configurations without negatively 

affecting performance. Its usefulness can be 

observed as it exists in practical computing 

environments in the real-world; it can inform 

resource allocation and deployment strategies to 

improve the performance and energy 

consumption of systems in cloud, GPU, and 

mobile infrastructures. 

To improve cross-platform adaptability and 

scalability of the proposed PAGA–CPTM-

NSGA-II framework, the proposed study will 

include transfer learning in future work. 

Transfer learning will allow predictive model to 

remember already learnt patterns of software-

hardware interaction and adapt effectively to 

new or unknown computing conditions with 

minimum retraining. The method can greatly 

save on computational expenses, and also, high 

accuracy of prediction is guaranteed in a variety 

of hardware designs. Moreover, it can make the 

framework have a greater real-world 

applicability by being able to be deployed 

quickly in dynamic computing infrastructures in 

which performance profiles often change. The 

improvement will enhance the generalization 

and long-term adaptability of the model to 

perform predictions and optimize its 

performance. 
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Appendix 

Algorithm.1 NSGA-II for Cross-Platform 

Deployment Optimization 

Input: metrics = {execution_time, energy, 

memory_usage}, N, G, α, β, γ   

Output: optimal_solutions   

Initialize population P with N random 

deployments   

for each individual i in P:   

    fitness[i] = α * execution_time[i] + β * 

energy[i] + γ * memory_usage[i]   

if P is not empty:   

    sort P into Pareto fronts   

    calculate crowding_distance for each 

individual   

else:   

    return "Population Initialization Error"   

generation = 0   

while generation < G:   

    parents = select_parents(P)   

    offspring = crossover(parents)   

    mutate(offspring)   

    for each individual j in offspring:   

https://www.kaggle.com/datasets/abdurraziq01/cloud-computing-performance-metrics
https://www.kaggle.com/datasets/abdurraziq01/cloud-computing-performance-metrics


 
 Alsubayhay et al 897 

 

 J Technol Res. 2026;4:880-897.                                                                                  https://jtr.cit.edu.ly 

 

        fitness[j] = α * execution_time[j] + β * 

energy[j] + γ * memory_usage[j]   

    R = P ∪ offspring   

    sort R into Pareto fronts   

    calculate crowding_distance for R   

    if size(R) > N:   

        P = select_top_N(R, N)   

    else:   

        P = R   

    generation = generation + 1   

end while   

if P contains non_dominated_solutions:   

    optimal_solutions = 

extract_non_dominated(P)   

else:   

    optimal_solutions = random_selection(P)   

return optimal_solutions   

 

Algorithm 2 : Cross-Platform 

Spatiotemporal Performance Prediction 

Input: dataset D   

Output: predicted_metrics, 

optimal_deployment   

if D is empty:   

    return "No data available"   

for each record r in D:   

    if missing_numeric(r):   

        replace(r, mean_or_median)   

    if missing_categorical(r):   

        replace(r, mode)   

    handle_outliers(r)   

normalize_features(D)   

extract_features(D, hardware_load, 

software_workload)   

align_timestamps(D)   

G = create_graph(nodes = 

{software_modules, hardware}, edges = 

dependencies)   

assign_node_features(G, workload, 

platform)   

for each node i in G:   

    h_i = transform(node_features[i])   

    for each neighbor j:   

        alpha_ij = compute_attention(i, j)   

    h_i_prime = aggregate(alpha_ij, 

neighbors)   

for each time_step t:   

    m_i[t] = update_memory(h_i[t-1], 

input[t])   

    for each node j:   

        beta_ij[t] = temporal_attention(i, j, t)   

    h_i[t] = aggregate_temporal(beta_ij[t], 

h_i[t])   

z_i = fuse_features(h_i_PAGA, h_i_CPTM, 

platform_features)   

predicted_metrics = predict(z_i, targets = 

{execution_time, CPU, memory, energy})   

loss = weighted_MSE(predicted_metrics, 

actual_values)   

if new_platform_detected:   

    fine_tune_embeddings(D)   

initialize_population(configs, size = N)   

generation = 0   

while generation < G:   

    for each config c:   

        fitness[c] = α * execution[c] + β * 

energy[c] + γ * memory[c]   

    ranked = non_dominated_sort(fitness)   

    parents = select_parents(ranked)   

    offspring = crossover_mutation(parents)   

    generation = generation + 1   

optimal_deployment = 

extract_Pareto_solutions(offspring)   

deploy(optimal_deployment)   

if deviation_detected(metrics):   

    adjust_resources(optimal_deployment)   

return predicted_metrics, 

optimal_deployment   

 

 

 

 

 

 

 


