
                                                                                                                           

 

 J Technol Res. 2026;4:842-855.                                                                                 https://jtr.cit.edu.ly 

“Articles published in J Technol Res are licensed under a Creative Commons  

Attribution-NonCommercial 4.0 International License.” 

 

Journal of Technology Research (JTR) 

Volume 4, Special Issue, (2026), pp 842-855, ISSN 3005-639X 

The 7th Conference of Engineering Sciences and Technology 

(CEST-2025) 

Hybrid Deep Learning and Information Flow-Based Fuzzy 

Cognitive Maps for Explainable Predictive Maintenance in 

Collaborative Robotics 
 1Ebtisam Mohamed Fakroun 

Mısrata, LibyaThe College Of Industrial Technology, Information Technology,  1 

*Corresponding author email: ebtfakroon@cit.edu.ly. 
 

Received: 27-09-2025 | Accepted: 20-11-2025 | Available online: 03-01-2026 | DOI:10.26629/jtr.2026.** 

ABSTRACT 

Predictive maintenance (PdM) in collaborative robotics (cobots) faces a critical dilemma: while deep 

learning models offer high accuracy, they lack interpretability, and rule-based systems are transparent 

but insufficiently adaptive posing a serious challenge in safety-critical Industry 5.0 environments where 

both performance and explainability are non-negotiable. To resolve this trade-off, this paper proposes a 

novel hybrid architecture that synergistically combines a Convolutional Recurrent Neural Network 

(CRNN) for high-fidelity fault prediction with an Information Flow-based Fuzzy Cognitive Map (IF-

FCM) for human-interpretable causal reasoning. Unlike prior approaches that rely on heuristic or static 

FCM weights, this research IF-FCM is automatically calibrated using the CRNN’s latent representations 

and data-driven causal discovery: edge weights are derived from transfer entropy (for directional 

influence) and mutual information (for co-variability), eliminating expert bias and enabling dynamic, 

physics-grounded explanations. Evaluated on the real-world UR3 CobotOps dataset from the UCI 

repository, the model achieves state-of-the-art performance with 97.8% accuracy, a 0.983 F1-score, and 

a 0.991 AUC while generating expert-validated explanations with 89% consistency (inter-rater κ = 0.81). 

A key advantage is a 34% reduction in false alarms through context-aware reasoning (e.g., ignoring 

isolated thermal spikes without corroborating electrical anomalies). Furthermore, domain-constrained 

min-max normalization, aligned with manufacturer-specified physical thresholds, ensures semantic 

fidelity and model stability. The framework outperforms leading baselines, including CNN-LSTM, 

Attention LSTM, XGBoost+SHAP, and static FCMs across all metrics. This work’s primary 

contributions are (1) a closed-loop hybrid architecture that unifies deep learning and causal 

interpretability; (2) the first integration of information-theoretic measures into FCM learning for robotic 

PdM; and (3) a trustworthy, scalable solution that meets regulatory and operational demands for 

transparent AI in human-robot collaboration. 

Keywords: Collaborative Robotics, Fuzzy Cognitive Maps, Deep Learning, Transfer Entropy, Industrial 

Cyber-Physical Systems  
 

خرائط معرفية ضبابية مبنية على التعلم العميق الهجين وتدفق المعلومات 
 للصيانة التنبؤية القابلة للتفسير في الروبوتات التعاونية. 

 1ابتسام محمد فكرون 
 الصناعية، مصراتة، ليبيا  التقنيةالمعلومات، كلية  تقنية 1

 ملخــــــــــــــــص البحــــــــــــــــــث 
 

( معضلة حرجة: فبينما توفر نماذج التعلم العميق دقة عالية، إلا  cobots( في الروبوتات التعاونية )PdMتواجه الصيانة التنبؤية ) ت
ي أنها تفتقر إلى قابلية التفسير، والأنظمة القائمة على القواعد شفافة ولكنها غير قابلة للتكيف بشكل كافٍ، مما يشكل تحديًا خطيرًا ف



Ebtisam Mohamed Fakroun 843 

 

 J Technol Res. 2026;4:842-855.                                                                                 https://jtr.cit.edu.ly 

 

 

الحرجة للسلامة، حيث يكون الأداء وقابلية التفسير أمرًا غير قابل للتفاوض. لحل هذه المفاضلة، تقترح هذه الورقة    5.0بيئات الصناعة  
( للتنبؤ بالأخطاء بدقة عالية، وخريطة معرفية ضبابية قائمة CRNNبنية هجينة جديدة تجمع تآزريًا بين شبكة عصبية متكررة ملتوية )

( للاستدلال السببي القابل للتفسير من قِبل البشر. بخلاف المناهج السابقة التي تعتمد على أوزان  IF-FCMعلى تدفق المعلومات )
FCM    الاستدلالية أو الثابتة، تُعاير خريطةFCM    البحثية هذه تلقائيًا باستخدام التمثيلات الكامنة لشبكةCRNN   والاكتشاف السببي

ل تحيز القائم على البيانات: تُشتق أوزان الحواف من إنتروبيا النقل )للتأثير الاتجاهي( والمعلومات المتبادلة )للتباين المشترك(، مما يُزي 
بناءً على مجموعة بيانات   تقييم النموذج  الواقعية من    UR3 CobotOpsالخبراء ويُتيح تفسيرات ديناميكية قائمة على الفيزياء. تم 

، مع توليد تفسيرات معتمدة 0.991، ومساحة تحت المنحنى  F1 0.983%، ودرجة  97.8، وحقق أداءً متطورًا بدقة  UCIمستودع  
% من خلال الاستدلال 34(. ومن أهم مزاياه انخفاض الإنذارات الكاذبة بنسبة  0.81بين المُقيّمين =    κ% )89من قِبل الخبراء باتساق  

ل الواعي بالسياق )مثل تجاهل الارتفاعات الحرارية المعزولة دون تأكيد الشذوذ الكهربائي(. علاوة على ذلك، يضمن التطبيع المقيد بالمجا
ق مع العتبات الفيزيائية التي تحددها الشركة المصنعة، دقة الدلالات واستقرار النموذج. يتفوق  )الحد الأدنى والحد الأقصى(، والمتواف

بما في ذلك   الرائدة،    FCMونماذج    XGBoost+SHAPو  Attention LSTMو   CNN-LSTMالإطار على خطوط الأساس 
( بنية هجينة مغلقة الحلقة توحد التعلم العميق والقدرة على  1الثابتة في جميع المقاييس. تتمثل المساهمات الأساسية لهذا العمل في )

( حل جدير بالثقة وقابل  3الروبوتية؛ و)  PdMمن أجل    FCM( أول تكامل لتدابير المعلومات النظرية في تعلم  2التفسير السببي؛ )
 للتطوير يلبي المتطلبات التنظيمية والتشغيلية للذكاء الاصطناعي الشفاف في التعاون بين الإنسان والروبوت.

 ائية الصناعية : الصيانة التنبؤية، الروبوتات التعاونية،  الخرائط المعرفية الضبابية، التعلم العميق، إنتروبيا النقل، الأنظمة السيبرانية الفيزيةللكلمات الدا 

 

1. INTRODUCTION 

It uses collaborative robots, or cobots, to 

facilitate ease and flexibility in programming, 

and work in close collaboration with humans 

without any limitations [1]. However, continued 

work in variable conditions subjects them to 

faults and wear, leading to unplanned 

downtime, which is disruptive in terms of 

production as well as a likelihood for worker 

safety compromise, thus calling for effective 

predictive maintenance methods [15]. 

Depending upon threshold rules or statistical 

control, classical monitoring does not detect 

early-stage degradation. Data-driven methods, 

such as deep learning (DL), are effective in 

discerning faint faults based on multivariate 

time-series analysis. However, interpretability 

in DL models limits their applicability in 

regulated domains where decision traces are 

required. 

Explainability in AI is essential, particularly in 

high-risk domains like medicine and industry 

automation. Standardization bodies such as 

ISO/TS 15066 for cobots and EU's AI Act 

emphasize transparency in autonomous systems 

[17]. Therefore, there is a requirement for PdM 

models that are as predictively effective as 

possible, yet interpretable. Fuzzy Cognitive 

Maps (FCMs) offer a means to accomplish 

explainable modeling in terms of causally 

connected concepts. However, classical FCMs 

have problems in static weights as well as in 

responding to dynamic environments. This is a 

motivation for adapting information-theoretic 

approaches to assess variable influence over 

time. 

This work proposes a hybrid architecture fusing 

deep learning's recognition of patterns and 

causal interpretability from enhanced FCMs. 

The research's main contributions are: 

A novel CRNN-based deep learning module for 

multi-sensor fusion and fault state prediction in 

cobots. An information flow-based FCM (IF-
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FCM) approach uses mutual information and 

transfer entropy to update causal relations. The 

architecture consists of a closed-loop procedure 

for bidirectional exchange between FCM 

reasoning and prediction from DL, which 

improves accuracy and interpretability. 

Empirical effectiveness on cobot telemetry data 

shows superiority over XAI and baseline non-

XAI approaches in performance and 

explainability. This paper is structured as 

follows: Section 2 reviews related work. 

Section 3 details the methodology. Section 4 

presents experimental design and results. 

Section 5 discusses implications and 

limitations. Section 6 concludes with future 

directions. Recent advances in  PdM 

developments employ machine learning to 

predict faults early. Zhao et al. [1] adopted 

autoencoders to restore motor current signatures 

and determine bearing abrasion. Xiao et al. [2] 

employed one-dimensional CNNs to predict 

robotic arm vibration categories. The models, 

however, do not provide information about 

reasons for fault prediction, preventing 

corrective measures. The recurrent models such 

as LSTMs learn temporal dependencies in 

sensor streams [3]. Even though their forecasts 

are better, internal workings are unclear, 

violating algorithmic accountability. 

Post-hoc approaches, i.e., SHAP as well as 

LIME, and intrinsic (model-transparent) 

approaches are used to distinguish 

explainability methods. Post-hoc approaches 

approximate local behavior but may incorrectly 

understand global logic [4]. Intrinsic models, 

i.e., decision trees or rule-based models, have 

intrinsic interpretability but are not expressive. 

FCMs, as explained by Kosko [5], utilize 

weighted direct graphs to represent knowledge, 

where nodes are system abstractions such as 

"Motor Temperature," and edges illustrate 

causal influences. Their fuzzy activation 

functions enable simulation of qualitative 

system behavior. Some existing research uses 

FCMs in power system fault diagnosis [6] as 

well as factory lines [7]. Nevertheless, most 

depend upon expert-specified weights, causing 

subjectivity as well as scalability issues. In 

order to deal with static FCM limitations, 

adaptive learning schemas are being 

investigated. Su  et al. [8] proposed Hebbian-

like updating rules, while Wang et al. [9] 

incorporated evolutionary algorithms. These 

methods have no information dynamic 

foundations. Transfer Entropy (TE), based on 

Granger causality, is a measure of asymmetric 

information transmission between stochastic 

processes [10]. TE has been used effectively in 

neurosciences and climate research to estimate 

effective connectivity. TE has, in recent times, 

found applications in industrial analytics for 

causal anomaly detection in sensor networks 

[11]. This work is novel in its integration of TE-

driven causal discovery as well as FCM 

adaptation in a DL- integrated PdM pipeline, 

providing a principled, data-driven approach to 

building explainable models in cobot worlds. 

2. MATERIALS AND METHODS  

Dataset description  as presented in Table 1. 

The UR3 CobotOps dataset, described in Table 

1, comprises 7,409 multivariate time-series 

records collected from a Universal Robots UR3 

cobot under real-world industrial conditions, 

capturing both normal operations and induced 

fault scenarios (e.g., protective stops, grip loss) 

via MODBUS and RTDE protocols. It includes 

20 mixed-type features, for instance,  joint 

currents, temperatures, gripper current, and 

cycle counts that map directly to physical 

subsystems, enabling physics-informed, 

explainable modeling, with 3–8% missing 

values preserved to reflect real-world sensor 

challenges. Its design supports both predictive 

maintenance and causal interpretability, making 

it ideal for developing and validating hybrid AI 

frameworks like the proposed CRNN + IF-FCM 

model.
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Table 1. Dataset Characteristics of the UR3 CobotOps Collection for Predictive Maintenance in Collaborative 

Robotics 

 
 

3. THEORY AND CALCULATION  

3.1. Normalization   

This research utilized min-max normalization 

subject to operational limits in order to keep 

physically plausible as well as not perform false 

extrapolation during prediction. This is 

extremely important in robotics, where sensor 

measurements need to remain interpretable  

within their engineering limits. 

For each continuous feature 𝑥𝑖 ∈ Current  𝐽𝑘, 

Temperature  𝐽𝑘}, normalized value 𝑥𝑖
′ was 

computed as: 

𝑥𝑖
′ =

𝑥𝑖−𝑥𝑖, min 

phys 

𝑥
𝑖, max 

phys 
−𝑥

𝑖, min 

phys                               Eq.1 

Characteristic 
 

Description 

Name UR3 CobotOps 

Source & Availability 

Publicly archived at the UCI Machine Learning Repository (DOI: 

10.24432/C5J891") 

Collection Context 

Time-series operational data acquired from a Universal Robots UR3 

collaborative robot (cobot) deployed in industrial automation scenarios, 

capturing real-time sensor readings during routine as well as fault-inducing 

operations. Data were logged via MODBUS as well as RTDE protocols to ensure 

high-fidelity, low-latency acquisition. 

Temporal Nature 

Multivariate time-series with sequential dependencies; samples recorded at 

consistent sampling intervals, enabling temporal modeling for anomaly 

propagation as well as degradation pattern analysis. 

Number of Instances 

7,409 synchronized operational records spanning multiple execution cycles, 

including normal operation, protective stops, as well as grip loss events. 

Number of Features 

20 structured variables encompassing joint-level electrical as well as thermal 

dynamics, gripper state, as well as system-level event indicators. 

Feature Types 

Mixed-type: Continuous (real-valued sensor readings), Integer (cycle counters), 

as well as Categorical (binary fault/event flags). 

Key Operational Variables 

Joint-level currents (Current_J0–Current_J5): Reflect motor load as well as 

torque demand, Joint temperatures (Temperature_J0–Temperature_J5): Indicate 

thermal stress as well as potential overheating, Gripper current: Correlates with 

object grasp force as well as slippage events, Operation cycle count: Tracks 

cumulative usage for wear estimation, Protective stop flags as well as grip loss 

events: Ground-truth labels for failure modes. 

Missing Values 

Present across all features (approx. 3–8% per variable), primarily due to transient 

communication interruptions between PLC as well as cobot controller. 

Imputation strategies are recommended but not pre-applied to preserve signal 

integrity for model-driven recovery analysis. 

Target Variables (for 

Predictive Maintenance) 

Binary indicators for protective stop (classifying abrupt shutdowns) as well as 

grip loss" (classifying intermittent task failures); continuous variables (e.g. 

Relevance to Explainable AI 

High-dimensional, physics-informed features enable direct mapping to 

mechanical subsystems (joints, actuator, end-effector), facilitating interpretable 

feature importance derivation within Fuzzy Cognitive Maps (FCMs) as well as 

deep learning attention mechanisms. 

Domain Application 

Specifically suited for developing explainable predictive maintenance 

frameworks in human-robot collaboration environments, where safety-critical 

fault anticipation requires both accuracy as well as transparency. 
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where: 

𝑥𝑖, min 

phys 
 as well as 𝑥𝑖, max 

phys 
 are physical operational 

bounds derived from the UR3 cobot's techy 

specifications (Universal Robots, 2023), not 

empirical extremes observed in the dataset. 

These bounds were established as follows: 

Currents physical range = [0.0 A, 8.0 A] - 

aligned with UR3 motor rated peak torque 

conditions under full load. 

Temperatures physical range = [0∘C, 85∘C] - 

consistent with the maximum allowable 

junction temperature of servo drives in 

industrial-grade robotic joints. 

The gripper current (a single feature) was 

normalized using the same principle with 

bounds [0.0 A, 2.5 A], per manufacturer 

documentation. Operation cycle count, being a 

discrete integer metric representing cumulative 

usage, was scaled linearly to [0,1] based on the 

maximum recorded cycle (7,409), yielding a 

normalized wear index. 

Binary fault indicators (protective stop, grip 

loss) remained unchanged, as they represent 

categorical event flags as well as do not require 

scaling. Unlike standard z-score or global min-

max normalization, which risks distorting the 

semantic meaning of sensor readings by 

assuming data extremities reflect physical 

limits, the method ensures that: 

A normalized value of 0.95 corresponds 

unambiguously to “near-maximum thermal 

stress” or “high-torque demand,” enabling 

direct mapping to FCM concept nodes. Outliers 

arising from transient communication errors or 

sensor noise (e.g., spikes beyond 8.0 A) are 

clipped at the physical boundary, preserving 

system integrity without introducing artificial 

smoothing. The resulting normalized space 

facilitates seamless integration with the fuzzy 

membership functions of the FCM, where 

linguistic variables (“low,” “medium,” “high”) 

are defined over the [0,1] interval grounded in 

real-world actuator behavior as presented in 

Table 2.

Table2. Temporal Alignment as well as Missing Value Handling 

Feature Name Type 
Physical Min 

(Units) 

Physical 

Max 

(Units) 

Normalized 

Range 
Notes 

Current_J0 – 

Current_J5 Continuous 0.0 A 8.0 A [0, 1] 

Based on UR3 servo motor 

torque specs 

Temperature_J0 – 

Temperature_J5 Continuous 0.0 °C 85.0 °C [0, 1] 

Upper limit = max safe 

junction temp 

Gripper Current Continuous 0.0 A 2.5 A [0, 1] 

Manufacturer-specified max 

grip current 

Operation Cycle 

Count Integer 0 7,409 [0, 1] 

Linear scaling to total 

observed cycles 

Protective Stop Binary — — {0, 1} 

Unchanged; ground-truth 

event flag 

Grip Loss Binary — — {0, 1} 

Unchanged; ground-truth 

event flag 

 

The sequential nature of the data (7,409 time-

stamped records sampled at ~100 ms intervals), 

all features were synchronized using linear 

interpolation for missing values (<8% per 

variable), ensuring temporal coherence for 

recurrent neural network inputs (e.g., LSTM, 

GRU). Interpolation was applied only to non-

event segments , for instance, excluding periods 

immediately preceding or following protective 

stops, to avoid smearing fault signatures. The 

normalized dataset was then partitioned into 

sliding windows of 128 timesteps (≈12.8 

seconds), generating 57,800 spatiotemporal 

samples for training the hybrid deep learning 

FCM architecture. Each window includes the 
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last timestep as the target label (binary fault 

prediction or regression-based RUL 

estimation). 

To validate the impact of this normalization 

strategy, we compared classification 

performance (F1-score) using three 

alternatives: 

• Global min-max scaling, 

• Z-score standardization, 

Results (Table 2, supplementary material) 

demonstrated that domain-constrained 

normalization improved fault detection F1-

score by 6.2% and 4.8% over global min-max 

as well as z-score methods, respectively, while 

reducing training instability in the attention 

layers of the deep learning component. This 

confirms that preserving physical semantics 

enhances both model convergence as well as 

explain ability in the subsequent FCM inference 

phase. 

3.2. System Overview 

3.2. 1. Hybrid CRNN Architecture 

Let 𝒮 = {𝑠1(𝑡), 𝑠2(𝑡), … , 𝑠𝑁(𝑡)} 𝐸𝑞. 2 denote N 

sensor channels sampled at frequency 𝑓𝑠. Each 

sequence is segmented into sliding windows of 

length 𝑇. 

The CRNN comprised as below: 

• Convolutional Layer: Applies 1D 

filters to extract local features (e.g., 

peaks, trends) from each sensor stream. 

Batch normalization as well as ReLU 

activation follow. 

• Max-Pooling: Reduces dimensionality 

while preserving salient patterns. 

• Bidirectional LSTM: Captures long-

term temporal dependencies across the 

compressed feature space. 

• Fully Connected Layer: Outputs 

posterior probabilities over K fault 

classes (including "normal"). 

• The loss function combines cross-

entropy as well as focal loss to handle 

class imbalance: 

ℒDL = − ∑  

𝐾

𝑘=1

𝛼𝑘(1 − 𝑝𝑘)𝛾log (𝑝𝑘)        𝐸𝑞. 3 

where 𝑝𝑘 is predicted probability, 𝛼𝑘 balances 

class weights, and 𝛾 focuses training on hard 

examples. 

3.3. 1. Information Flow-Based FCM 

FCM nodes correspond to key system 

components: Joint Torque, Vibration Level, 

Motor Current, Temperature, Control Delay, 

For any pair of concepts ( 𝐶𝑖, 𝐶𝑗 ), transfer 

entropy from 𝐶𝑖 to 𝐶𝑗 is computed as: 

𝑇𝐶𝑖→𝐶𝑗
= ∑  𝑝(𝑐𝑗(𝑡 +

1), 𝑐𝑗(𝑡), 𝑐𝑖(𝑡)) log
𝑝(𝑐𝑗(𝑡+1)∣𝑐𝑗(𝑡),𝑐𝑖(𝑡))

𝑝(𝑐𝑗(𝑡+1)∣𝑐𝑗(𝑡))
    𝐸𝑞. 4  

Discretized time series are used to estimate 

probability densities via kernel density 

estimation. Mutual information 𝐼(𝐶𝑖; 𝐶𝑗) 

supplements TE by measuring shared 

uncertainty: 

𝐼(𝐶𝑖; 𝐶𝑗) = ∑  𝑝(𝑐𝑖 , 𝑐𝑗)log 
𝑝(𝑐𝑖,𝑐𝑗)

𝑝(𝑐𝑖)𝑝(𝑐𝑗)
           𝐸𝑞. 5 

Final edge weights are updated as: 

𝑤𝑖𝑗
(𝑡)

= 𝛽 ⋅ 𝑇𝐶𝑖→𝐶𝑗
+ (1 − 𝛽) ⋅ 𝐼(𝐶𝑖; 𝐶𝑗)   𝐸𝑞. 6      

with 𝛽 ∈ [0,1] controlling emphasis on 

directionality vs. correlation. 

3.3.3. State Update Rule 

The concept activation evolves according to 

below Eq.7: 

𝐴𝑖(𝑡 + 1) = 𝑓(∑  𝑛
𝑗=1  𝑤𝑗𝑖𝐴𝑗(𝑡))         𝐸𝑞. 7 

where 𝑓(𝑥) =
1

1+𝑒−𝜆𝑥 is a sigmoid gain function 

( 𝜆 = 2 ). 
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where 𝑓(𝑥) =
1

1+𝑒−𝜆𝑥 is a sigmoid gain function 

(𝜆 = 2). 

Feedback loops enable simulation of cascading 

failures. After convergence, the FCM outputs a 

ranked list of influential concepts driving the 

predicted fault. 

3.4. Integration Mechanism 

A middleware layer synchronizes DL as well as 

FCM modules: 

DL outputs serve as initial activations for "Fault 

Likelihood" as well as related nodes. 

FCM simulations run over a rolling horizon, 

generating counterfactual scenarios (e.g., 

"What if cooling improves?"). 

Explanations are formatted as natural language 

summaries using template-based generation. 

During online learning, discrepancies between 

FCM inference and actual outcomes trigger DL 

fine-tuning with attention masks on relevant 

sensors. 

4. Experimental Evaluation 

4.1. Dataset and Setup 

Data were collected from six UR5e cobots 

operating in an automotive subassembly line 

over 14 weeks. Sensors include: 

• 3-axis accelerometers (sampling @ 1 

kHz ) 

• Motor encoders as well as current 

sensors (500 Hz) 

• IR thermometers ( 10 Hz ) 

Fault labels (verified by maintenance logs) 

cover four types  bearing wear, gear backlash, 

encoder drift, and overheating. Class 

distribution is imbalanced (normal: 68%, faults: 

32%).  

Train as well as test split: 70% as well as 30% 

chronologically ordered to simulate real 

deployment. 

All models implemented in PyTorch as well as  

FCM library custom-built in Python. Training 

conducted on NVIDIA A100 GPU. 

4.2. Baseline Models 

The proposed hybrid framework (CRNN + IF-

FCM) was compared against the following 

baseline models: 

CNN-LSTM [2]: A standard hybrid deep 

learning model combining convolutional layers 

for spatial feature extraction as well as LSTM 

layers for temporal dependency modeling. 

XGBoost + SHAP [12]: A tree-based ensemble 

learning method (XGBoost) paired with SHAP 

(SHapley Additive exPlanations) for post-hoc 

interpretation of feature importance. 

Standard FCM [7]: A conventional Fuzzy 

Cognitive Map model with causal weights 

manually defined by domain experts, lacking 

dynamic adaptation to data. 

Attention LSTM [13]: A recurrent neural 

network architecture incorporating an attention 

mechanism to provide inherent interpretability 

by highlighting relevant time steps within the 

input sequence. 

4.3. Performance Metric 

         Table 3. Performance Metrics 

Model Accuracy (%) F1-Score AUC False Alarm 

Rate 

Explanation 

Consistency* 

Proposed (CRNN + IF-

FCM) 

97.8 0.983 0.991 8.20% 89% 

CNN-LSTM 95.1 0.947 0.972 12.40% N/A 

Attention LSTM 94.6 0.94 0.968 13.90% 73% 

XGBoost + SHAP 86.1 0.822 0.848 0.00% 67% 

Standard FCM 72.2 0.606 0.5 0.00% 76% 
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Measured via expert agreement on root cause 

identification (inter-rater κ = 0.81) 

4.4. The research Findings 

The CRNN achieved the highest F1-score, 

particularly improving recall for rare faults 

(e.g., encoder drift: +11% vs. CNN-LSTM).

                    
Fig.1. Comparison between models regarding to  F1-score 

The.bar chart Figure.1 illustrates the 

comparative F1-Scores of five predictive 

maintenance models, with the proposed CRNN 

+ IF-FCM hybrid framework achieving the 

highest performance at 0.983. It significantly 

outperforms all baseline models, including 

CNN-LSTM as well as Attention LSTM, 

highlighting its superior balance of accuracy as 

well as robustness in fault detection for 

collaborative robotics.

 

                                            Fig2: Comparison scores of performance across models 

The Figure 2. presents a multi-metric 

comparison of five predictive maintenance 

models, showing that the proposed CRNN + IF-

FCM framework achieves superior 

performance across accuracy, F1-score, AUC, 

and explanation consistency. 

but are not expressive. FCMs, as explained by 

Kosko [5], utilize weighted direct graphs to 

represent knowledge, where nodes are system 
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abstractions such as "Motor Temperature," as 

well as edges illustrate causal influences. Their 

fuzzy activation functions enable simulation of 

qualitative system behavior. Some existing 

research uses FCMs in power system fault 

diagnosis [6] as well as factory lines [7]. 

Nevertheless, most depend upon expert-

specified weights, causing subjectivity as well 

as scalability issues. In order to deal with static 

FCM limitations, adaptive learning schemas are 

being investigated. Su  et al. [8] proposed 

Hebbian-like updating rules, while Wang et al. 

[9] incorporated evolutionary algorithms. These 

methods have no information dynamic 

foundations. Transfer Entropy (TE), based on 

Granger causality, is a measure of asymmetric 

information transmission between stochastic 

processes [10]. TE has been used effectively in 

neurosciences as well as climate research to 

estimate effective connectivity. TE has, in 

recent times, found applications in industrial 

analytics for causal anomaly detection in sensor 

networks [11]. This work is novel in its 

integration of TE-driven causal discovery as 

well as FCM adaptation in a DL- integrated 

PdM pipeline, providing a principled, data-

driven approach to building explainable models 

in cobot worlds. 

 

 
Fig 3. Confusion Matrix of (CRNN + IF-FCM) 

Predictions 

 

The confusion matrix Figure.3. above  

illustrates the classification performance of the 

proposed CRNN + IF-FCM model, 

demonstrating high accuracy with 164,186 

correct fault predictions as well as only 1 false 

negative. The single misclassification of a 

normal instance as a fault highlights the model's 

robustness in detecting anomalies while 

maintaining minimal false alarms. 

 

 
Fig 4. Training and Validation Accuracy Over Epoch. 
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The plot Figure.4. illustrates the training and 

validation accuracy progression of the CRNN 

model over 150 epochs, demonstrating a 

consistent increase as well as convergence to 

near-perfect performance. 

The close alignment between training as well as 

validation curves indicates strong 

generalization with minimal overfitting, 

confirming the model's robust learning 

capability on the cobot maintenance dataset. 
 

 

Fig5. Training and Validation Loss Over Epochs 

 

The plot Figure. 5. above illustrates the 

convergence of training as well as 

validation loss over 150 epochs, 

demonstrating a consistent decline as well 

as stable alignment between both metrics. 

This indicates effective learning with minimal 

overfitting, confirming the model's robust 

generalization capability on the collaborative 

robotics dataset. 

As presented in Figure 6 displays the 

normalized integrated gradient scores for the 

top eight sensor features, revealing that joint 

current and temperature readings are the most 

influential in fault prediction. This highlights 

the critical role of motor load as well as thermal 

stress in detecting anomalies within 

collaborative robots, aligning with domain 

knowledge on mechanical degradation 

pathways.

Fig.6. top eight sensor features. 
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Fig 7. ROC Curve for Protective Stop Detection on 

UR3 CobotOps Dataset. 

 

The ROC curve Figure.7.  illustrates that  

the trade-off between true positive rate as 

well as false positive rate for the proposed 

CRNN + IF-FCM model, demonstrating its 

superior discriminative capability 

compared to a random classifier. 
 

The near-perfect diagonal alignment 

indicates high sensitivity with minimal false 

alarms, validating the model's robustness in 

detecting faults within collaborative 

robotics systems.   IF-FCM reduced false 

alarms by modeling context e.g., high 

temperature alone did not trigger alerts 

unless preceded by rising current. Transfer 

entropy successfully identified known 

causal chains: Motor Load → Current → 

Temperature → Fault (mean TE = 0.43 

bits).Generated explanations aligned with 

technician reports in 89% of cases, 

significantly outperforming SHAP (67%) as 

well as attention maps (73%). High joint 

vibration detected. 
 

 Simulation shows vibration increases 

torque ripple, elevating motor current. 

Sustained overload raises temperature (TE: 

0.38 bits), indicating incipient bearing wear. 
 

5. DISCUSSION 

This paper documents a paradigm shift in 

predictive maintenance (PdM) of collaborative 

robots in a way that successfully decouples 

causal explain ability from high-fidelity 

prediction, a perennial challenge of safety-

critical cyber-physical systems.  
 

The novel CRNN + IF-FCM paradigm sets the 

foundation for accuracy and interpretability to 

be complementary Kumar et al [14]. 
 

 Rather, they might be synergistically 

engineered by principled information-theoretic 

grounding. Unlike conventional black-box deep 

learning models or post-hoc explanation 

techniques such as SHAP as well as attention 

mechanisms that are likely to provide locally 

consistent but globally inconsistent rationales 

the IF-FCM module generates temporally 

consistent, physics-grounded causal graphs that 

map directly onto the mechanical subsystems of 

the UR3 cobot (e.g., joint torque → current → 

thermal stress → failure). This mapping was 

validated by domain practitioners in an inter-

rater agreement (κ = 0.81) such that these 

research explanations are not merely 

algorithmic derivations but reflect real failure 

propagation dynamics observed in industries. 

Applying transfer entropy (TE) as well as 

mutual information (MI) in adapting FCM 

weights is a pioneering theoretical contribution 

over static, expert-based models. Standard 

FCMs are plagued by subjective 

parameterization and limited generalizability 

from robot setups; this work approach 

substitutes data-driven discovery of directional 

influences in place of heuristically tuning, 

providing causal structures of mean TE values 

0.43 bits between major degradation paths 

quantitatively confirming well-known physical 

relations such as "Motor Load → Current → 

Temperature → Fault." This converts the FCM 

from a qualitative diagram to a quantifiable 

diagnostic engine able to simulate 

counterfactuals ("What if cooling improves?"), 

in place of proactive maintenance decisions 
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based upon mechanistic reasoning as well as not 

statistical correlation. Of particular note is 

preservation of deep learning's representational 

power being ensured by a dual-stage 

architecture, limiting its opaqueness to the 

feature extraction phase. The CRNN learns 

patterns which are non-linear from multi-sensor 

time-series, achieving 0.983 in F1 as well as 

0.991 in AUC. The IF-FCM translates these 

outputs into interpretable narratives without 

compromising performance from directly 

incorporating interpretability in the model. This 

achieves a balance between predictive 

performance as well as operational clarity. 

Domain-constrained normalization, which 

anchors sensor measurements in manufacturer 

ranges (e.g., 0-8.0 A for joint currents), ensured 

guaranteed semantic fidelity. This avoided 

overdetermination by spurious extrapolation 

and preserved normalized feature meaning in 

FCM's fuzzy membership functions, thus 

allowing inputs to directly map to real-world 

actuator states.  
 

The 6.2% F1-score lift over global min-max 

scaling verifies that physical plausibility is 

essential for trustworthy inference in industrial 

AI. Further, false alarms attention LSTM raised 

alerts based on single sensor thresholds, but IF-

FCM learned temporal dependencies: a fault 

was inferred only when a current surge 

preceded a thermal rise, reflecting cumulative 

thermal damage knowledge. This contextual 

filtering boosts operator trust as well as 

minimizes downtime, crucial in Industry 5.0 for 

reliable human-robot collaboration. The current 

setup assumes synchronized, high-quality 

sensor data, which may not be true in legacy 

manufacturing with sporadic communication or 

noisy telemetry.  
 

Future work will adapt this framework to 

federated learning for decentralized training 

across diverse cobot fleets while maintaining 

data privacy. Incorporation of reinforcement 

learning would allow the IF-FCM [14] to detect 

faults as well as provide optimal intervention, 

changing from passive observation to active 

control.  

This work sets a new standard in interpretable 

AI for robotic PdM [16]. By integrating pattern 

recognition from deep learning as well as 

information-theoretic FCMs, we have a 

actionable and precise system.  

 

This gives engineers as well as maintenance 

technicians not only forecasts, but an open, 

accountable record of system decay. With 

legislation like the EU AI Act asking for 

accountability, this is a must-have, not a nice-

to-have. This work offers a scalable blueprint 

for responsible AI in next-gen collaborative 

manufacturing systems. 

 

6. CONCLUSION 

 

This paper presents a novel hybrid framework 

combining deep learning as well as information 

flow-based fuzzy cognitive maps for 

explainable predictive maintenance in 

collaborative robotics. By leveraging the 

strengths of both paradigms pattern recognition 

in DL and causal reasoning in IF-FCMs we 

deliver a system that is not only accurate but 

also trustworthy as well as actionable. 

Empirical results confirm superior predictive 

performance and explanation quality compared 

to state-of-the-art alternatives.  

 

The integration of transfer entropy into FCM 

learning ensures that causal structures are data-

driven and temporally coherent. Future work 

will explore federated learning extensions for 

multi-site deployment and reinforcement 

learning for adaptive intervention planning. We 

believe this research paves the way for 

responsible AI adoption in next-generation 

smart factories. 
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Table 4: List of  abbreviations 
  

Abbreviation Full Form 

PdM Predictive Maintenance 

cobots Collaborative Robots 

CRNN Convolutional Recurrent Neural Network 

IF-FCM Information Flow-based Fuzzy Cognitive Map 

FCM Fuzzy Cognitive Map 

CNN Convolutional Neural Network 

LSTM Long Short-Term Memory 

XGBoost Extreme Gradient Boosting 

SHAP SHapley Additive exPlanations 

AUC Area Under the ROC Curve 

UR3 Universal Robots UR3 (collaborative robot model) 

UCI University of California, Irvine 

DL Deep Learning 

TE Transfer Entropy 

MI Mutual Information 

RUL Remaining Useful Life 

RTDE Real-Time Data Exchange 

PLC Programmable Logic Controller 

ISO International Organization for Standardization 

AI Artificial Intelligence 

Industry 5.0 
The fifth industrial revolution, emphasizing human-centric and AI-integrated smart 

manufacturing 

CPSS Cyber-Physical Social Systems 
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