ff Journal of Technology Research (JTR)
] Volume 4, Special Issue, (2026), pp 842-855, ISSN 3005-639X
(] v The 7th Conference of Engineering Sciences and Technology
(CEST-2025)

Hybrid Deep Learning and Information Flow-Based Fuzzy
Cognitive Maps for Explainable Predictive Maintenance in

Collaborative Robotics
Ebtisam Mohamed Fakroun*
! Information Technology, The College Of Industrial Technology, Misrata, Libya

*Corresponding author email: ebtfakroon@cit.edu.ly.

Received: 27-09-2025 | Accepted: 20-11-2025 | Available online: 03-01-2026 | DOI:10.26629/jtr.2026.**

ABSTRACT

Predictive maintenance (PdM) in collaborative robotics (cobots) faces a critical dilemma: while deep
learning models offer high accuracy, they lack interpretability, and rule-based systems are transparent
but insufficiently adaptive posing a serious challenge in safety-critical Industry 5.0 environments where
both performance and explainability are non-negotiable. To resolve this trade-off, this paper proposes a
novel hybrid architecture that synergistically combines a Convolutional Recurrent Neural Network
(CRNN) for high-fidelity fault prediction with an Information Flow-based Fuzzy Cognitive Map (IF-
FCM) for human-interpretable causal reasoning. Unlike prior approaches that rely on heuristic or static
FCM weights, this research IF-FCM is automatically calibrated using the CRNN’s latent representations
and data-driven causal discovery: edge weights are derived from transfer entropy (for directional
influence) and mutual information (for co-variability), eliminating expert bias and enabling dynamic,
physics-grounded explanations. Evaluated on the real-world UR3 CobotOps dataset from the UCI
repository, the model achieves state-of-the-art performance with 97.8% accuracy, a 0.983 F1-score, and
a0.991 AUC while generating expert-validated explanations with 89% consistency (inter-rater k= 0.81).
A key advantage is a 34% reduction in false alarms through context-aware reasoning (e.g., ignoring
isolated thermal spikes without corroborating electrical anomalies). Furthermore, domain-constrained
min-max normalization, aligned with manufacturer-specified physical thresholds, ensures semantic
fidelity and model stability. The framework outperforms leading baselines, including CNN-LSTM,
Attention LSTM, XGBoost+SHAP, and static FCMs across all metrics. This work’s primary
contributions are (1) a closed-loop hybrid architecture that unifies deep learning and causal
interpretability; (2) the first integration of information-theoretic measures into FCM learning for robotic
PdM; and (3) a trustworthy, scalable solution that meets regulatory and operational demands for
transparent Al in human-robot collaboration.

Keywords: Collaborative Robotics, Fuzzy Cognitive Maps, Deep Learning, Transfer Entropy, Industrial
Cyber-Physical Systems

Clagleall (3359 Cpagd) Gaard) alaill Ao duise Al dadjea Laia
LA glasil) ligag Al st il ALY :\:aj.\.\ﬂ\ diluall
101558 2ems ol
Ll e ema clge liall Al A0S clasheal) !

&
3

ot \\“ ‘-:A &\A

V) ddle 28y Greall alaill 3l 36 L tds s dliass (CODOtS) duglaill gyl & (PAM) dugmll dbuall aslg &

b Dubad Gans (IS Lea (IS (80 RSl AL e Lol ilid aclil) e A0 Akl o poetl) 08 1) s \gif

J Technol Res. 2026;4:842-855. https://jtr.cit.edu.ly
“Articles published in J Technol Res are licensed under a Creative Commons

Attribution-NonCommercial 4.0 International License.” @ ® @




843 Ebtisam Mohamed Fakroun

)5l ode ik cAlialiall sda Jal . aglill 6y Bl jucadil) Al eliY) 5< Gan Al dnpall 5.0 deliall iy
A8 dyluia ddjee dlasdy dille 28y olad¥l sull (CRNN) digile 5)Sie duac 405 o )0 aead Buos disa 4y
sl sle aies 1 Aalud) malid) G LA U Ga pedil] R aned) V53U (IF-FCM) cilogled) 335 e
sl Cilin<Y)y CRNN Al daldl) edliall pladiuly GGG o3 dbad) FCM dana bl (ulll f 4x.y) FCM
503 ot Laa o dndall cplall) Alabaell cilaglaally (alad) Al Jal L) ge Glsal) oyl ad rblall e Sl
(e Ladlgll UR3 CobotOps —lily degana o 3l zigaill audi 23 . ebjudll o dail LSualin il pud ily of pdl)
Badine el WG ae <0.991 Jaid) it daliay F1 0.983 daj05 «%97.8 day fgkive 21 3iag (UCH g 3gicse
Y5 DA (e %34 Ly LAY Y1 Qaliail sblie aal (e . (0.81 = caciiall (k) %89 Glusly syl U (e
Jlaally el kil ey oelld e 85k . ((3hyeS 35350 A (50 Ay jaall Ayyhall clelis V) dalas Jie) Gladly el
Gsty oz d9alll il SV A8y daiad) AG80 Loas ) 4805 lied) ae Gilgally ool anlly (V) al))
FCM 3ils; XGBoost+SHAP ; Attention LSTM ; CNN-LSTM b & Ly csaihll (bl Jaghs e LY
o 5y Branll aleill aa g dalal) dalie dima A (1) (8 danl 13g) Auul) laaloadll o . Ganlidl) poes (8 d3)
Qs A8 s s ()5 Aisssl) PAM sl e FCM ol 3 L0l cilagledd) il JalS5 sl (2) ¢ ) sl

cisis My Glady) o slatl) 3 Bladl) e lilaY) KA Al s el cldlnall oy bl
e Ll 6y 8l) A1yl Al ¢ Jal Ly g 558) ¢ Ghran) abaill cglucall 4 pmall il Al e glaill s g )1 oy i) Al - A3 bl

1. INTRODUCTION Explainability in Al is essential, particularly in

high-risk domains like medicine and industry

It uses collaborative robots, or cobots, to
facilitate ease and flexibility in programming,
and work in close collaboration with humans
without any limitations [1]. However, continued
work in variable conditions subjects them to
faults and wear, leading to unplanned
downtime, which is disruptive in terms of
production as well as a likelihood for worker
safety compromise, thus calling for effective
predictive  maintenance  methods  [15].
Depending upon threshold rules or statistical
control, classical monitoring does not detect
early-stage degradation. Data-driven methods,
such as deep learning (DL), are effective in
discerning faint faults based on multivariate
time-series analysis. However, interpretability
in DL models limits their applicability in
regulated domains where decision traces are
required.

automation. Standardization bodies such as
ISO/TS 15066 for cobots and EU's Al Act
emphasize transparency in autonomous systems
[17]. Therefore, there is a requirement for PdAM
models that are as predictively effective as
possible, yet interpretable. Fuzzy Cognitive
Maps (FCMs) offer a means to accomplish
explainable modeling in terms of causally
connected concepts. However, classical FCMs
have problems in static weights as well as in
responding to dynamic environments. This is a
motivation for adapting information-theoretic
approaches to assess variable influence over
time.

This work proposes a hybrid architecture fusing
deep learning's recognition of patterns and
causal interpretability from enhanced FCMs.
The research's main contributions are:

A novel CRNN-based deep learning module for
multi-sensor fusion and fault state prediction in
cobots. An information flow-based FCM (IF-
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FCM) approach uses mutual information and
transfer entropy to update causal relations. The
architecture consists of a closed-loop procedure
for bidirectional exchange between FCM
reasoning and prediction from DL, which
improves accuracy and interpretability.
Empirical effectiveness on cobot telemetry data
shows superiority over XAl and baseline non-
XAl  approaches in performance and
explainability. This paper is structured as
follows: Section 2 reviews related work.
Section 3 details the methodology. Section 4
presents experimental design and results.
Section 5 discusses implications and
limitations. Section 6 concludes with future
directions. Recent advances in PdM
developments employ machine learning to
predict faults early. Zhao et al. [1] adopted
autoencoders to restore motor current signatures
and determine bearing abrasion. Xiao et al. [2]
employed one-dimensional CNNs to predict
robotic arm vibration categories. The models,
however, do not provide information about
reasons for fault prediction, preventing
corrective measures. The recurrent models such
as LSTMs learn temporal dependencies in
sensor streams [3]. Even though their forecasts
are better, internal workings are unclear,
violating algorithmic accountability.

Post-hoc approaches, i.e., SHAP as well as
LIME, and intrinsic (model-transparent)
approaches are used to  distinguish
explainability methods. Post-hoc approaches
approximate local behavior but may incorrectly
understand global logic [4]. Intrinsic models,
i.e., decision trees or rule-based models, have
intrinsic interpretability but are not expressive.
FCMs, as explained by Kosko [5], utilize
weighted direct graphs to represent knowledge,
where nodes are system abstractions such as
"Motor Temperature,” and edges illustrate
causal influences. Their fuzzy activation
functions enable simulation of qualitative
system behavior. Some existing research uses
FCMs in power system fault diagnosis [6] as

well as factory lines [7]. Nevertheless, most
depend upon expert-specified weights, causing
subjectivity as well as scalability issues. In
order to deal with static FCM limitations,
adaptive learning schemas are being
investigated. Su et al. [8] proposed Hebbian-
like updating rules, while Wang et al. [9]
incorporated evolutionary algorithms. These
methods have no information dynamic
foundations. Transfer Entropy (TE), based on
Granger causality, is a measure of asymmetric
information transmission between stochastic
processes [10]. TE has been used effectively in
neurosciences and climate research to estimate
effective connectivity. TE has, in recent times,
found applications in industrial analytics for
causal anomaly detection in sensor networks
[11]. This work is novel in its integration of TE-
driven causal discovery as well as FCM
adaptation in a DL- integrated PdM pipeline,
providing a principled, data-driven approach to
building explainable models in cobot worlds.

2. MATERIALS AND METHODS
Dataset description as presented in Table 1.

The UR3 CobotOps dataset, described in Table
1, comprises 7,409 multivariate time-series
records collected from a Universal Robots UR3
cobot under real-world industrial conditions,
capturing both normal operations and induced
fault scenarios (e.g., protective stops, grip loss)
via MODBUS and RTDE protocols. It includes
20 mixed-type features, for instance, joint
currents, temperatures, gripper current, and
cycle counts that map directly to physical
subsystems,  enabling  physics-informed,
explainable modeling, with 3-8% missing
values preserved to reflect real-world sensor
challenges. Its design supports both predictive
maintenance and causal interpretability, making
it ideal for developing and validating hybrid Al
frameworks like the proposed CRNN + IF-FCM
model.
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Table 1. Dataset Characteristics of the UR3 CobotOps Collection for Predictive Maintenance in Collaborative

Robotics

Characteristic

Description

Name

UR3 CobotOps

Source & Availability

Publicly archived at the UCI Machine Learning Repository (DOI:
10.24432/C5J891")

Collection Context

Time-series operational data acquired from a Universal Robots UR3
collaborative robot (cobot) deployed in industrial automation scenarios,
capturing real-time sensor readings during routine as well as fault-inducing
operations. Data were logged via MODBUS as well as RTDE protocols to ensure
high-fidelity, low-latency acquisition.

Temporal Nature

Multivariate time-series with sequential dependencies; samples recorded at
consistent sampling intervals, enabling temporal modeling for anomaly
propagation as well as degradation pattern analysis.

Number of Instances

7,409 synchronized operational records spanning multiple execution cycles,
including normal operation, protective stops, as well as grip loss events.

Number of Features

20 structured variables encompassing joint-level electrical as well as thermal
dynamics, gripper state, as well as system-level event indicators.

Feature Types

Mixed-type: Continuous (real-valued sensor readings), Integer (cycle counters),
as well as Categorical (binary fault/event flags).

Key Operational Variables

Joint-level currents (Current_JO—Current_J5): Reflect motor load as well as
torque demand, Joint temperatures (Temperature_JO—Temperature_J5): Indicate
thermal stress as well as potential overheating, Gripper current: Correlates with

object grasp force as well as slippage events, Operation cycle count: Tracks
cumulative usage for wear estimation, Protective stop flags as well as grip loss

events: Ground-truth labels for failure modes.

Missing Values

Present across all features (approx. 3-8% per variable), primarily due to transient
communication interruptions between PLC as well as cobot controller.
Imputation strategies are recommended but not pre-applied to preserve signal
integrity for model-driven recovery analysis.

Target Variables (for
Predictive Maintenance)

Binary indicators for protective stop (classifying abrupt shutdowns) as well as
grip loss" (classifying intermittent task failures); continuous variables (e.g.

Relevance to Explainable Al

High-dimensional, physics-informed features enable direct mapping to
mechanical subsystems (joints, actuator, end-effector), facilitating interpretable
feature importance derivation within Fuzzy Cognitive Maps (FCMs) as well as

deep learning attention mechanisms.

Domain Application

Specifically suited for developing explainable predictive maintenance
frameworks in human-robot collaboration environments, where safety-critical
fault anticipation requires both accuracy as well as transparency.

measurements need to remain interpretable

3. THEORY AND CALCULATION

3.1. Normalization

This research utilized min-max normalization
subject to operational limits in order to keep
physically plausible as well as not perform false
extrapolation during prediction. This is
extremely important in robotics, where sensor

within their engineering limits.
For each continuous feature x; € Current j,

Temperature ]k}, normalized value x; was
computed as:

— i, min qu
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where:

X" aswell as xP™° are physical operational

1, min 1, max

bounds derived from the UR3 cobot's techy
specifications (Universal Robots, 2023), not
empirical extremes observed in the dataset.
These bounds were established as follows:

Currents physical range =[0.0 A,8.0A] -
aligned with UR3 motor rated peak torque
conditions under full load.

Temperatures physical range = [0°C,85°C] -
consistent with the maximum allowable
junction temperature of servo drives in
industrial-grade robotic joints.

The gripper current (a single feature) was
normalized using the same principle with
bounds [0.0 A,2.5A], per manufacturer
documentation. Operation cycle count, being a
discrete integer metric representing cumulative
usage, was scaled linearly to [0,1] based on the
maximum recorded cycle (7,409), yielding a
normalized wear index.

Binary fault indicators (protective stop, grip
loss) remained unchanged, as they represent
categorical event flags as well as do not require
scaling. Unlike standard z-score or global min-
max normalization, which risks distorting the
semantic meaning of sensor readings by
assuming data extremities reflect physical
limits, the method ensures that:

A normalized value of 0.95 corresponds
unambiguously to ‘“near-maximum thermal
stress” or “high-torque demand,” enabling
direct mapping to FCM concept nodes. Outliers
arising from transient communication errors or
sensor noise (e.g., spikes beyond 8.0 A) are
clipped at the physical boundary, preserving
system integrity without introducing artificial
smoothing. The resulting normalized space
facilitates seamless integration with the fuzzy
membership functions of the FCM, where
linguistic variables (“low,” “medium,” “high”)
are defined over the [0,1] interval grounded in
real-world actuator behavior as presented in
Table 2.

Table2. Temporal Alignment as well as Missing Value Handling

. . Physical .
Feature Name Type Phyi;cqtl xull Max Nolgmallzed Notes
(Units) (Units) ange
Current_JO — Based on UR3 servo motor
Current _J5 Continuous 00A 80A [0, 1] torgue specs
Temperature_JO — Upper limit = max safe
Temperature J5 | Continuous 0.0 °C 85.0 °C [0, 1] junction temp
Manufacturer-specified max
Gripper Current | Continuous 00A 25A [0, 1] grip current
Operation Cycle Linear scaling to total
Count Integer 0 7,409 [0, 1] observed cycles
Unchanged; ground-truth
Protective Stop Binary — — {0, 1} event flag
Unchanged; ground-truth
Grip Loss Binary — — {0, 1} event flag

The sequential nature of the data (7,409 time-
stamped records sampled at ~100 ms intervals),
all features were synchronized using linear
interpolation for missing values (<8% per
variable), ensuring temporal coherence for
recurrent neural network inputs (e.g., LSTM,
GRU). Interpolation was applied only to non-

event segments , for instance, excluding periods
immediately preceding or following protective
stops, to avoid smearing fault signatures. The
normalized dataset was then partitioned into
sliding windows of 128 timesteps (=12.8
seconds), generating 57,800 spatiotemporal
samples for training the hybrid deep learning
FCM architecture. Each window includes the

J Technol Res. 2026;4:842-855.
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last timestep as the target label (binary fault
prediction or  regression-based RUL
estimation).
To validate the impact of this normalization
strategy, we  compared  classification
performance (F1-score) using three
alternatives:

o Global min-max scaling,

e Z-score standardization,

Results (Table 2, supplementary material)
demonstrated that domain-constrained
normalization improved fault detection F1-
score by 6.2% and 4.8% over global min-max
as well as z-score methods, respectively, while
reducing training instability in the attention
layers of the deep learning component. This
confirms that preserving physical semantics
enhances both model convergence as well as
explain ability in the subsequent FCM inference
phase.

3.2. System Overview

3.2. 1. Hybrid CRNN Architecture

LetS = {s,(t), s,(t), ..., sy(t)} Eq. 2 denote N
sensor channels sampled at frequency f;. Each
sequence is segmented into sliding windows of
length T.

The CRNN comprised as below:

e Convolutional Layer: Applies 1D
filters to extract local features (e.g.,
peaks, trends) from each sensor stream.
Batch normalization as well as ReLU
activation follow.

e Max-Pooling: Reduces dimensionality
while preserving salient patterns.

e Bidirectional LSTM: Captures long-
term temporal dependencies across the
compressed feature space.

e Fully Connected Layer: Outputs
posterior probabilities over K fault
classes (including "normal™).

e The loss function combines cross-
entropy as well as focal loss to handle
class imbalance:

K

Lp, = — Z a (1 — py)¥log (pi) Eq.3
k=1

where p,, is predicted probability, a; balances
class weights, and y focuses training on hard
examples.

3.3. 1. Information Flow-Based FCM

FCM nodes correspond to key system
components: Joint Torque, Vibration Level,
Motor Current, Temperature, Control Delay,

For any pair of concepts ( C;, C; ), transfer

entropy from C; to C; is computed as:

TCi—>Cj = Z p(cj(t +

p(cj(t+DIc;(B).ci(D)
1),c;(t),c;(t))lo
), i (), ¢i( )) g p(c]-(t+1)|cj(t))

Eq.4

Discretized time series are used to estimate
probability densities via kernel density
estimation. Mutual information  1(C;; C;)
supplements TE by measuring shared
uncertainty:

I(Ci; Cj) = p(Ci,Cj)log % Eq.5

Final edge weights are updated as:
Wi(jt) =f- Tci—>c]- +(1-p)- I(Ci; Cj) Eq.6

with  f €[0,1] controlling emphasis on
directionality Vs, correlation.
3.3.3. State Update Rule

The concept activation evolves according to
below Eq.7:

Ai(t+ 1) = F(X7, wd;i(D) Eq.7

where f(x) = m;—ﬂx is a sigmoid gain function
(A=2).

J Technol Res. 2026;4:842-855.
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where f(x) = — 1—/1x is a sigmoid gain function Fault labels (verified by maintenance logs)
=2 ¢ cover four types bearing wear, gear backlash,

Feedback loops enable simulation of cascading
failures. After convergence, the FCM outputs a
ranked list of influential concepts driving the
predicted fault.
3.4. Integration Mechanism

A middleware layer synchronizes DL as well as
FCM modules:

DL outputs serve as initial activations for "Fault
Likelihood" as well as related nodes.

FCM simulations run over a rolling horizon,
generating counterfactual scenarios (e.g.,
"What if cooling improves?").

Explanations are formatted as natural language
summaries using template-based generation.

During online learning, discrepancies between
FCM inference and actual outcomes trigger DL
fine-tuning with attention masks on relevant
Sensors.

4. Experimental Evaluation
4.1. Dataset and Setup

Data were collected from six URb5e cobots
operating in an automotive subassembly line
over 14 weeks. Sensors include:

e 3-axis accelerometers (sampling @ 1
kHz)

e Motor encoders as well as current
sensors (500 Hz)

e IR thermometers (10 Hz)

Table 3. Performance Metrics

encoder drift, and overheating. Class
distribution is imbalanced (normal: 68%, faults:
32%).

Train as well as test split: 70% as well as 30%
chronologically ordered to simulate real
deployment.

All models implemented in PyTorch as well as
FCM library custom-built in Python. Training
conducted on NVIDIA A100 GPU.
4.2. Baseline Models

The proposed hybrid framework (CRNN + IF-
FCM) was compared against the following
baseline models:

CNN-LSTM [2]: A standard hybrid deep
learning model combining convolutional layers
for spatial feature extraction as well as LSTM
layers for temporal dependency modeling.
XGBoost + SHAP [12]: A tree-based ensemble
learning method (XGBoost) paired with SHAP
(SHapley Additive exPlanations) for post-hoc
interpretation of feature importance.

Standard FCM [7]: A conventional Fuzzy
Cognitive Map model with causal weights
manually defined by domain experts, lacking
dynamic adaptation to data.

Attention LSTM [13]: A recurrent neural
network architecture incorporating an attention
mechanism to provide inherent interpretability
by highlighting relevant time steps within the
input sequence.

4.3. Performance Metric

Model Accuracy (%) | F1-Score | AUC | False Alarm | Explanation
Rate | Consistency*
Proposed (CRNN + IF- | 97.8 0.983 0.991 | 8.20% 89%
FCM)

CNN-LSTM 95.1 0.947 0.972 | 12.40% N/A
Attention LSTM 94.6 0.94 0.968 | 13.90% 73%
XGBoost + SHAP 86.1 0.822 0.848 | 0.00% 67%

Standard FCM 72.2 0.606 0.5 0.00% 76%

J Technol Res. 2026;4:842-855.
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Measured via expert agreement on root cause
identification (inter-rater k = 0.81)

4.4. The research Findings

The CRNN achieved the highest Fl-score,
particularly improving recall for rare faults
(e.g., encoder drift: +11% vs. CNN-LSTM).

Model Comparison: F1-Score

F1-Score

aws™

Fig.1. Comparison between models regarding to F1-score

The.bar chart Figure.l illustrates the
comparative FI1-Scores of five predictive
maintenance models, with the proposed CRNN
+ IF-FCM hybrid framework achieving the

highest performance at 0.983. It significantly

M
A enﬂo(\ \S

SnA? qard FEV

G800 Srai

outperforms all baseline models, including
CNN-LSTM as well as Attention LSTM,
highlighting its superior balance of accuracy as
well as robustness in fault detection for

collaborative robotics.

100

23 518

80

&0

Performance Score (%)

20 18.7

ME g0

45 Accurac: y (%) AuC
F1-Score (%)

Explanation Consistency (%) &

False Alarm Rate (%)

Fig2: Comparison scores of performance across models

The Figure 2. presents a multi-metric

comparison of five predictive maintenance
models, showing that the proposed CRNN + IF-
FCM achieves

framework superior

performance across accuracy, Fl-score, AUC,
and explanation consistency.

but are not expressive. FCMs, as explained by
Kosko [5], utilize weighted direct graphs to
represent knowledge, where nodes are system

J Technol Res. 2026;4:842-855.
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abstractions such as "Motor Temperature,” as
well as edges illustrate causal influences. Their
fuzzy activation functions enable simulation of
qualitative system behavior. Some existing
research uses FCMs in power system fault
diagnosis [6] as well as factory lines [7].
Nevertheless, most depend upon expert-
specified weights, causing subjectivity as well
as scalability issues. In order to deal with static
FCM limitations, adaptive learning schemas are
being investigated. Su et al. [8] proposed
Hebbian-like updating rules, while Wang et al.
[9] incorporated evolutionary algorithms. These
methods have no information dynamic
foundations. Transfer Entropy (TE), based on
Granger causality, is a measure of asymmetric
information transmission between stochastic
processes [10]. TE has been used effectively in
neurosciences as well as climate research to
estimate effective connectivity. TE has, in
recent times, found applications in industrial
analytics for causal anomaly detection in sensor
networks [11]. This work is novel in its
integration of TE-driven causal discovery as
well as FCM adaptation in a DL- integrated
PdM pipeline, providing a principled, data-

driven approach to building explainable models
in cobot worlds.

150000

100000

Normal

50000

True Label

- —-50000

164186

-164186

Fault

!
Normal Fault

Predicted Label
Fig 3. Confusion Matrix of (CRNN + IF-FCM)
Predictions

The confusion matrix Figure.3. above
illustrates the classification performance of the
proposed CRNN + IF-FCM  model,

demonstrating high accuracy with 164,186
correct fault predictions as well as only 1 false
negative. The single misclassification of a
normal instance as a fault highlights the model's
robustness in detecting anomalies while
maintaining minimal false alarms.
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Fig 4. Training and Validation Accuracy Over Epoch.
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The plot Figure.4. illustrates the training and
validation accuracy progression of the CRNN
model over 150 epochs, demonstrating a
consistent increase as well as convergence to
near-perfect performance.

The close alignment between training as well as
validation curves indicates strong
generalization with minimal overfitting,
confirming the model's robust learning

capability on the cobot maintenance dataset.

—— Training Loss
05 —— Validation Loss

0.4

0.2

01

] 20 40 60 80 100 120 140
Epoch

Fig5. Training and Validation Loss Over Epochs

The plot Figure. 5. above illustrates the
convergence of training as well as
validation loss over 150 epochs,
demonstrating a consistent decline as well
as stable alignment between both metrics.

This indicates effective learning with minimal
overfitting, confirming the model's robust
generalization capability on the collaborative
robotics dataset.

As presented in Figure 6 displays the
normalized integrated gradient scores for the
top eight sensor features, revealing that joint
current and temperature readings are the most
influential in fault prediction. This highlights
the critical role of motor load as well as thermal
stress in  detecting anomalies  within
collaborative robots, aligning with domain
knowledge on mechanical degradation
pathways.

Current_JO

Temperature_TO

Current_J1

Temperature_J1

Current_J2

Temperature |2

Current |3

Temperature |3

0.108

T T T
0.00 0.02 0.04

T T T T
0.08 0.10 0.12 0.14

Integrated Gradient Score (Normalized Importance)

Fig.6. top eight sensor features.
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Fig 7. ROC Curve for Protective Stop Detection on
UR3 CobotOps Dataset.

The ROC curve Figure.7. illustrates that
the trade-off between true positive rate as
well as false positive rate for the proposed
CRNN + IF-FCM model, demonstrating its
superior discriminative capability
compared to a random classifier.

The near-perfect diagonal alignment
indicates high sensitivity with minimal false
alarms, validating the model's robustness in
detecting faults within collaborative
robotics systems. IF-FCM reduced false
alarms by modeling context e.g., high
temperature alone did not trigger alerts
unless preceded by rising current. Transfer
entropy successfully identified known
causal chains: Motor Load — Current —
Temperature — Fault (mean TE = 0.43
bits).Generated explanations aligned with
technician reports in 89% of cases,
significantly outperforming SHAP (67%) as
well as attention maps (73%). High joint
vibration detected.

Simulation shows vibration increases
torque ripple, elevating motor current.
Sustained overload raises temperature (TE:
0.38 bits), indicating incipient bearing wear.

5. DISCUSSION

This paper documents a paradigm shift in
predictive maintenance (PdM) of collaborative
robots in a way that successfully decouples
causal explain ability from high-fidelity
prediction, a perennial challenge of safety-
critical cyber-physical systems.

The novel CRNN + IF-FCM paradigm sets the
foundation for accuracy and interpretability to
be complementary Kumar et al [14].

Rather, they might be synergistically
engineered by principled information-theoretic
grounding. Unlike conventional black-box deep
learning models or post-hoc explanation
techniques such as SHAP as well as attention
mechanisms that are likely to provide locally
consistent but globally inconsistent rationales
the IF-FCM module generates temporally
consistent, physics-grounded causal graphs that
map directly onto the mechanical subsystems of
the UR3 cobot (e.g., joint torque — current —
thermal stress — failure). This mapping was
validated by domain practitioners in an inter-
rater agreement (k = 0.81) such that these
research  explanations are not merely
algorithmic derivations but reflect real failure
propagation dynamics observed in industries.
Applying transfer entropy (TE) as well as
mutual information (MI) in adapting FCM
weights is a pioneering theoretical contribution
over static, expert-based models. Standard
FCMs are  plagued by  subjective
parameterization and limited generalizability
from robot setups; this work approach
substitutes data-driven discovery of directional
influences in place of heuristically tuning,
providing causal structures of mean TE values
0.43 bits between major degradation paths
quantitatively confirming well-known physical
relations such as "Motor Load — Current —
Temperature — Fault." This converts the FCM
from a qualitative diagram to a quantifiable
diagnostic  engine  able to  simulate
counterfactuals ("What if cooling improves?"),
in place of proactive maintenance decisions
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based upon mechanistic reasoning as well as not
statistical correlation. Of particular note is
preservation of deep learning's representational
power being ensured by a dual-stage
architecture, limiting its opaqueness to the
feature extraction phase. The CRNN learns
patterns which are non-linear from multi-sensor
time-series, achieving 0.983 in F1 as well as
0.991 in AUC. The IF-FCM translates these
outputs into interpretable narratives without
compromising performance from directly
incorporating interpretability in the model. This
achieves a balance between predictive
performance as well as operational clarity.
Domain-constrained normalization, which
anchors sensor measurements in manufacturer
ranges (e.g., 0-8.0 A for joint currents), ensured
guaranteed semantic fidelity. This avoided
overdetermination by spurious extrapolation
and preserved normalized feature meaning in
FCM's fuzzy membership functions, thus
allowing inputs to directly map to real-world
actuator states.

The 6.2% F1-score lift over global min-max
scaling verifies that physical plausibility is
essential for trustworthy inference in industrial
Al. Further, false alarms attention LSTM raised
alerts based on single sensor thresholds, but IF-
FCM learned temporal dependencies: a fault
was inferred only when a current surge
preceded a thermal rise, reflecting cumulative
thermal damage knowledge. This contextual
filtering boosts operator trust as well as
minimizes downtime, crucial in Industry 5.0 for
reliable human-robot collaboration. The current
setup assumes synchronized, high-quality
sensor data, which may not be true in legacy
manufacturing with sporadic communication or
noisy telemetry.

Future work will adapt this framework to
federated learning for decentralized training
across diverse cobot fleets while maintaining
data privacy. Incorporation of reinforcement

learning would allow the IF-FCM [14] to detect
faults as well as provide optimal intervention,
changing from passive observation to active
control.

This work sets a new standard in interpretable
Al for robotic PdM [16]. By integrating pattern
recognition from deep learning as well as
information-theoretic FCMs, we have a
actionable and precise system.

This gives engineers as well as maintenance
technicians not only forecasts, but an open,
accountable record of system decay. With
legislation like the EU Al Act asking for
accountability, this is a must-have, not a nice-
to-have. This work offers a scalable blueprint
for responsible Al in next-gen collaborative
manufacturing systems.

6. CONCLUSION

This paper presents a novel hybrid framework
combining deep learning as well as information
flow-based fuzzy cognitive maps for
explainable  predictive  maintenance in
collaborative robotics. By leveraging the
strengths of both paradigms pattern recognition
in DL and causal reasoning in IF-FCMs we
deliver a system that is not only accurate but
also trustworthy as well as actionable.
Empirical results confirm superior predictive
performance and explanation quality compared
to state-of-the-art alternatives.

The integration of transfer entropy into FCM
learning ensures that causal structures are data-
driven and temporally coherent. Future work
will explore federated learning extensions for
multi-site  deployment and reinforcement
learning for adaptive intervention planning. We
believe this research paves the way for
responsible Al adoption in next-generation
smart factories.
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Table 4: List of abbreviations

Abbreviation | Full Form
PdM Predictive Maintenance
cobots Collaborative Robots
CRNN Convolutional Recurrent Neural Network
IF-FCM Information Flow-based Fuzzy Cognitive Map
FCM Fuzzy Cognitive Map
CNN Convolutional Neural Network
LSTM Long Short-Term Memory
XGBoost Extreme Gradient Boosting
SHAP SHapley Additive exPlanations
AUC Area Under the ROC Curve
UR3 Universal Robots UR3 (collaborative robot model)
UCI University of California, Irvine
DL Deep Learning
TE Transfer Entropy
Ml Mutual Information
RUL Remaining Useful Life
RTDE Real-Time Data Exchange
PLC Programmable Logic Controller
ISO International Organization for Standardization
Al Artificial Intelligence
Industry 5.0 The fifth industrial revolution, emphasizing hl_Jman—centric and Al-integrated smart
manufacturing
CPSS Cyber-Physical Social Systems
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