% &

S Journal of Technology Research (JTR) g @
X q Volume 2, Issue 2, (2024), pp 053-058, ISSN 3005-639X - Nwrerprrerret

&

Machine Learning in Head and Neck Cancer: Clinical Prospects
and Future Directions

Rasheed O. Alabi'?*, Alhadi Almangush®*, Mohammed Elmusrati’

Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
?Department of Industrial Digitalization, School of Technology and Innovations, University of Vaasa, Finland.
3 Department of Pathology, University of Helsinki, Helsinki, Finland.

4University of Turku, Institute of Biomedicine, Pathology, Turku, Finland.

*Corresponding author email: rasheed.alabi@helsinki.fi

Received: 09-10-2024 | Accepted: 24-10-2024 | Available online: 15-12-2024 | DOI:10.26629/jtr.2024.07

ABSTRACT

The American Joint Committee on Cancer (AJCC) Tumor-Nodal-Metastasis (TNM) staging system has
been widely used for planning of treatment strategies. However, for an individual patient, it is ineffective
for predicting outcome due to its inability to consider other tumor- and patient-related risk factors. To
this end, a tool that considers these factors together to accurately predict patients’ outcomes would be
pertinent. Objectives: This study aimed at examining the potential of a collaborative machine learning
(cML)-based approach in estimating the overall survival of oral cancer patients. We compared the
performance of cML with voting ensemble-based machine learning model. The prognostic significance
of the clinicopathological parameters used to develop the model was examined using permutation feature
importance. Furthermore, we examined some of the factors that can hinder the recommendation of
machine learning (ML) models for further clinical evaluations. Methodology: The clinicopathological
information of 9439 oral cancer patients were extracted from the Surveillance, Epidemiology, and End
Results database, United States. Altogether, three machine learning (ML) models — voting ensemble,
stacked ensemble, and extreme gradient boosting were combined to form a cluster of cML models. The
performance of the cML was compared with the best performing individual ML algorithm in terms of
accuracy. Results: The performance accuracy of voting ensemble, stacked ensemble, and extreme
gradient boosting was 70.2%, 69.2%, and Place figures are at the bottom, while the tables are at the top,
with the necessity of sequencing the numbering of the figures and tables as shown in TABLE 1. and Fig.
1. below 69.6%, respectively. When the cML and voting ensemble were randomly validated with 50
cases from the temporal validation cohort, they showed comparable performance. In terms of future
importance, the most significant features were age of the patient at diagnosis, T stage, tumor grade,
marital status, gender, primary site, surgery, N stage, radiation treatment, ethnicity, chemotherapy, and
M stage. Discussion and Conclusions: The idea of the cML is to consider the unique properties of each
of the ML models in making final predictions. Thus, representing a paradigm shift from individualism
to cooperativism in the quest for personalized estimation of outcome for oral cancer patients. Of note,
rather than competition among participating models, they cooperate to offer reliability to the final
prediction made by the cML. Lack of independent geographic validation, model generalization and
rigidity, and explainability are some of the factors identified that limit the recommendation of ML
models for further clinical evaluation. The cML approach may aid in determining individualized
treatment for oral cancer patients.

Keywords: Machine learning (ML); Head and Neck Squamous Cell Carcinoma (HNSCC); Overall survival;
Explainability.
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1. INTRODUCTION

Oral squamous cell carcinoma (OSCC)
represents the most frequent subsite of head and
neck cancer [1-3]. The rates for incidence,
recurrence, and mortality of OSCC have shown
a marked increase in recent decades in the
Western world due to the aggressive nature of
this type of cancer in terms of its rapid local
invasion and early lymph node metastasis [4-7].
Therefore, a concise effort is needed to predict
OSCC tumor behavior, but the lack of specific
prognostic indicators still constitutes a major
challenge [4]. In addition, the decision-making
regarding the best treatment approach is
somewhat challenging for many cases of OSCC
despite the general improved overall survival of
OSCC patients.

Remarkably, OSCC is usually diagnosed late.
This makes it relatively challenging to properly
manage OSCC due to the experience of higher
rates of recurrence and poor survival despite the
recent improvements in OSCC diagnostic and
management approaches [8,9]. Additionally, the
treatment options for these patients may
contribute to significant morbidity and
psychosocial concerns. Late-stage OSCC is
characterized by a significant burden on the
patient’s physical appearance (i.e.
disfiguration), proper functioning (mastication
and deglutition), major senses, airway, upper
gastrointestinal tract, and low self-esteem in
terms of social interactions and normal daily
activities [8]. Thus, it is important to properly
examine the patients to plan a targeted
individualized treatment option by examining
the 5-year overall survival (OS) prognosis.

2. MATERIALS AND METHODS

2.1 Collection of Data

In this study, we used the data from the National
Cancer Institute (NCI) through the Surveillance,
Epidemiology, and End Results (SEER)
Program of the National Institutes of Health
(NIH). This source was considered because it
contains a large number of cases that can support
large-scale analysis.

2.2 Ethical Permission

The ethical permission to use the SEER database
of the NCI was granted with the identification
number 17247-Nov2020 (alabir) for the
specialized dataset. An extension to access the
treatment-related parameters of the patients was
granted with the same identification number.

2.3 Variable Selection

The included clinicopathological parameters
available were age at diagnosis, ethnicity,
gender, marital status, tumor grade, and stage
classification according to the American Joint
Committee on Cancer (AJCC) tumor-nodal-
metastasis (TNM) 7th edition, and treatment
parameters. Overall survival was the primary
endpoint and target variable. The query of the
SEER database produced a total of 9439
pathologically confirmed OSCC patients. Some
of the selected variables were changed to
categorical parameters and normalized for the
ML training phase (sub-section 2.4)..

2.4 Machine Learning Training

In this project, several ensemble ML algorithms
were selected. We chose ensemble and tree-
based ML algorithms due to their promising
results in cancer prognostication tasks [12,13].
Therefore, the selected ensemble algorithms
were voting ensemble, stacked ensemble,
extreme gradient boosting (XGBoost), light
gradient boosting (light GBM), and logistic
regression. We combined the voting ensemble,
stacked, and Light GBM to form a collaborative
predictive model (¢cML). The schematic for the
collaborative paradigm is presented in Figure 1.
The performance of the cML was compared with
the highest-performing individual ensemble
method. The extracted data (sub-section 2.3)
were exported to Microsoft Azure Machine
Learning for model training. Following the
loading of data, we used a 5-fold cross-
validation and adjusted other training
parameters to guarantee better performance
accuracy. In demonstrating the cML paradigm,
a democratic voting approach was considered.

2.5. Performance Metrics of the Trained Model

The performance of the trained model was
evaluated primarily using accuracy. Other
performance metrics such as sensitivity,
specificity, FI- score, and area under receiving
operating characteristics curve were considered.
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Fig 1. Collaborative paradigm.
3. RESULTS AND DISCUSSION

Following model training, the individual
performance accuracy of the individual
participating algorithms was 70.2%, 69.9%,
69.1%, 69.4%, and 69.5% for voting ensemble,
stacked ensemble, XGBoost, Light GBM, and
logistic regression, respectively. When the
predictive outcomes of three of these algorithms
were combined for collaborative decision-
making (cML), the overall performance
accuracy of the cML showed comparable
performance with the voting ensemble. The
feature importance of the input variables
showed that the age of the patient at diagnosis,
T stage, tumor grade, marital status, gender,
primary site, surgery, N stage, radiation
treatment, ethnicity, chemotherapy, and M
stage, in decreasing order of importance, were
significant for the model’s ability to predict the
overall survival of oral cancer patients Fig 2.

0.6

I |
F&EESSS
SRS &N

& &
&

0.2 | I I
0 I
3 ¢ ¢ o
& S8 o& &
S PR &
e &

& &
& < d\z

0.4
5 e
¥ &
& ,;\"
&

@ All data

Fig 2. Significance of attributes.

The main limitations and concerns can be
grouped as either the challenges inherent to the
science of machine learning or relating to
clinical implementations. The concern inherent
to the science of machine learning includes the
black-box concern, amount and quality of the
data used in the training, unintended fitting of
cofounders as input variables, and
generalizability of the model (the predictive
model can be used outside the data on which it
was trained initially). The concerns relating to
clinical implementation include interpretability
and explainability, changing the fiducial
relationship between the patient and clinicians,
super-human analogy, and job-competitor

4. CONCLUSIONS

Individualized therapeutic decision-making
based on survival prognosis remains
challenging in the management of patients with
OSCC. In this study, we have used an ML
approach for overall survival (OS) prognosis. It
is hoped that this model can assist clinicians to
make an informed decision regarding future
treatment options. The individualized targeted
treatment can prevent overtreatment of OSCC
cancer patients, thereby, improving their quality
of health (QoH), and quality of life (QoL). In
this study, we leveraged a collaborative ML
(cML) paradigm so that rather than considering
the model as a single entity (model
individualism), we combined the unique
properties of each ML algorithm to form model
cooperativism. This study showed that cML
showed comparable performance with the
highest-performing ensemble method. Of note,
the idea of cML may not necessarily be hinged
on performance enhancements. However,
considering the sensitive nature of medical
applications such as cancer management where
the reliability of the prediction is pertinent, a
collaborative  (cML) approach  becomes
warranted. Our model highlighted the age of the
patient at diagnosis, and the T stage as the top
prognostic parameters for OS prediction in
OSCC. This finding is supported previous
findings in the literature [14—17].
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Remarkably, the approach of cML also seeks to
address some of the concerns limiting
recommending ML models for further clinical
evaluations. In recent years, several efforts have
been made to address concerns relating to the
model’s interpretability and explainability
using both SHapley Additive exPlanations
(SHAP) and Local Interpretable Model
Agnostic Explanations (LIME) techniques
[18,19]. Similarly, continuous efforts are being
made to further validate ML models using
independent external validations to facilitate
model generalizability [19,20]. While model
generalizability reveals the performance of the
model with independent data outside the
training cohorts, efforts aimed at continuous
model improvement are pertinent. The idea of
having web-based prognostic may not address
continuous model development, rather it seeks
to further validate the developed models.
Therefore, to benefit from the variability in the
data used for either temporal validation or
independent geographic validation, it is
important to explore other paradigms without
comprising data security and privacy-related
issues. An example of such a paradigm is the
use of federated machine learning [21].

With the advancements in technology and
availability of medical data in various formats
such as computed tomography (CT), positron
emission tomography (PET), and magnetic
resonance imaging (MRI), further diagnosis and
prognosis using a modified artificial neural
network, that is, a convolutional neural network
(CNN) have been explored in recent years [22].
The deep learning (DL) approach is aimed at
ensuring  personalized  medicine  from
radiological images of cancer patients. In recent
years, insightful parameters have been explored
from these images through radiomics [23].
Radiomics extracted features are now combined
with clinicopathological features or genomics
parameters to further enhance a robust model
that can facilitate personalized oncology [24].

In conclusion, our study further emphasized the
potential of ML for outcome prognostication
and personalized medicine to improve OSCC

management. Despite the promising results
showing the potential of ML for OSCC
management, these models should be developed
to further enhance explainability,
interpretability, and externally validated for
generalizability in order to be safely integrated
into daily clinical practices. Also, regulatory
frameworks for the adoption of these models in
clinical practices are necessary. Our study has
some limitations. First, the data used for ML
model development were retrospective in
nature. Second, the models are not externally
validated to evaluate the true performance of the
model. In future studies, it is essential to further
validate the cML and individual ML model
using a relatively large amount of data to further
evaluate the potential of cML. This is important
to further fulfill our ultimate goal of providing
a reliable prediction from an ML model that can
aid in personalized treatment plans for patients
with OSCC.
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