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ABSTRACT 

A huge source of energy lies within the incident solar heat and light from the sun,especially for colder 

territories found in the Nordics such as Finland. For a country situated with close proximity to the North 

pole, Finland suffers from chilling conditions most of the year in addition to the withheld Sun light. 

Except during the very short seasons of spring and summer when the Sun remains in the sky for almost 

22 hours per day on average. Thus, solar heat flux and solar irradiation become essential energy sources 

between April and September annually. However, solar irradiance is a physical quantity that is highly 

affected by probabilistic uncertainty found in many weather conditions, solar behavior throughout the 

year, time of the day, and the geographical location. In this article, we propose a solar irradiance 

estimation method base on the Extended Kalman algorithms. The experiment was carried out between 

the years 2014-2016 in which we installed solar radiation sensors underground and on a rooftop inside 

the campus of Vaasa University. The readings were collected via an embedded system specifically 

designed for the endeavors of this experiment. The results showed that the algorithm was able to predict 

the incident solar irradiance on the city of Vaasa (Finland) with an acceptable accuracy range. 

Keywords: solar irradiance, extended Kalman filter, probability and stochastics.

تقدير غير خطي للإشعاع الشمسي الساقط على فنلندا باستخدام مُنعمات كالمان  
 الممتدة في الزمن المتقطع

1يت، محمد المصرا1، يانّي كوليونِن2تشوهاج  ، كانر1محمود السنهوري *

.كلية التكنولوجيا والابتكارات، جامعة فازا، فازا، فنلندا1
.شركة أسيا بورت للموانئ، تكيرداغ، تركيا ²

ملخــــــــــــــــص البحــــــــــــــــــث 
فنلندا.  الشمال الأوروبي مثل  الباردة في دول  المناطق  للطاقة، خاصةً في  الساقط مصدرًا هائلًا  الشمسي  الحرارة والضوء  تُعد 
فبالنسبة لدولة تقع على مقربة من القطب الشمالي، تعاني فنلندا من ظروف باردة معظم العام، بالإضافة إلى حجب ضوء الشمس،  

والصي الربيع  تقارب  باستثناء فصلي  لمدة  السماء  في  الشمس  تبقى  للغاية، حيث  القصيرين  المتوسط.    22ف  في  يوميًا  ساعة 
وبالتالي، يُصبح تدفق الحرارة الشمسية والإشعاع الشمسي مصدرين أساسيين للطاقة بين أبريل وسبتمبر سنويًا. ومع ذلك، فإن  

مالي الموجود في العديد من الظروف الجوية، وسلوك الشمس  الإشعاع الشمسي هو كمية فيزيائية تتأثر بشدة بعدم اليقين الاحت
على مدار العام، ووقت اليوم، والموقع الجغرافي. في هذه المقالة، نقترح طريقة لتقدير الإشعاع الشمسي تعتمد على خوارزميات 

اع الشمسي تحت الأرض ، حيث قمنا بتركيب أجهزة استشعار للإشع2016و  2014كالمان الممتدة. أُجريت التجربة بين عامي  
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وعلى سطح مبنى داخل حرم جامعة فاسا. جُمعت القراءات عبر نظام مُدمج مُصمم خصيصًا لهذه التجربة. وأظهرت النتائج قدرة 
 . الخوارزمية على التنبؤ بالإشعاع الشمسي الساقط على مدينة فاسا )فنلندا( بدقة مقبولة

 - . 

1. INTRODUCTION

The sun provides our planet with renewable 

sources of energy, not only found in light 

energy but also in heat energy. The earth is 

being showered by massive bursts of energy 

coming from the sun every moment throughout 

the day. It is estimated that most of the utilized 

energy from the sun is light-based while the 

most wasted energy is the renewable heat and 

warmth incident from our star. 

Solar irradiance, also known as “solar 

insolation”, it is the quantity of sunlight power 

received from the sun per unit area on earth’s 

surface, measured in watt per meter square 

[W/m2]. Nearly 30% of the incident light 

power received on earth’s surface is attenuated 

by earth’s atmosphere i.e. the solar irradiance 

outside the atmosphere (extra-terrestrial) is 

always greater than the solar irradiance on 

earth’s surface (terrestrial) [1]. Moreover, 

knowing the quantity of incident solar 

irradiance is very beneficial for some 

photovoltaic scheduling applications [2]. 

The amount of incident solar irradiance 

depends on numerous factors and parameters. 

This physical quantity is highly sensitive to the 

weather conditions, time of the year and time of 

the day, the geographical location where it is 

been measured, and the sensitivity of the 

measuring equipment. Therefore, the nature of 

solar irradiance is found to be nonlinear 

stochastic process that contains higher degrees 

of uncertainty, which also make the future 

predictions are very challenging. 

The authors of [2] proposed an accurate model 

to forwardly predict solar irradiation for the 

next 24 hours based on the analysis of the post-

processing of the recorded datasets by adapting 

the order of the utilized polynomial functions. 

Furthermore, the authors expanded the 

proposed method to render a novel method 

comprised a bank of 24 Kalman filters working 

simultaneously on modifying the polynomial 

coefficients to estimate solar irradiance inside 

an airport. The results showed an acceptable 

accuracy of root mean square error = 20 W/m2. 

The novelty in the article consists of the real 

datasets being collected from the geographical 

location (Vaasa, Finland) for 3 successive 

years, in addition to the lightweight algorithmic 

methodology that processes the recorded data. 

The rest of article is organized as follows: 

Section I addresses the implemented 

procedures to collect the solar irradiance on 

Vaasa, Finland. Section II shows the detailed 

steps to our methodology in treating the 

datasets (pre- processing and post-processing) 

in addition to Kalman algorithms used to obtain 

most accurate predictions to solar irradiance. 

Section III describes the developed prediction 

model to estimate the solar irradiance values in 

Vaasa. Then, the article concludes with 

conclusions and references sections. 

1.1 Measuring Solar Irradiance in Finland 

In this study, three independent types of 

measurements via three sensor devices were 

pursued: 1) solar irradiance using pyranometer 

device, 2) heat flux absorbed by asphalt using a 

heat flux plate buried at depth 5 cm beneath the 

asphalt layer, 3) the temperature distribution 

through the depth using a distributed 

temperature sensing (DTS) system. The three 

methods are complementary to each other to 

produce a reliable perspective of the different 

ground layers. [1]  The data collection site was 

embedded underneath the University of Vaasa – 

Palosaari campus between 2014— 2016 as 

illustrated in Figure 1. Data collection site at the 

University of Vaasa, Finland. The 

measured values were transferred from the 
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sensors to the wireless sensor network 

implemented onsite, thus values were recorded 

as raw data by the server. 

Then, the data from the server were received by 

the wireless gateway, which hand it over to the 

linked embedded PC for preprocessing using 

MATLAB, finally it was stored on a hard drive 

[1]. The wireless sensor network structure is 

shown in Figure 2. 

Fig 1. Data collection site at the University of 

Vaasa, Finland. 

Fig 2:A: The location of pyranometer on the roof 

top of Tritonia building, Vaasa. 

Fig 2: B: An illustration depicting the embedded 

system for data collection which comprises the 

wireless sensor network. 

The conducted experiment to measure the 

quantity of incident solar irradiance in Vaasa 

was carried out through the installation of a 

Hukseflux pyranometer device on the lower 

rooftop of one of the campus buildings (Tritonia 

tower) in Vaasa University, which is roughly 11 

meters high. The pyranometer location was 

pointed directly to the open skies without 

suffering any projected shade from the 

surroundings. The timestamped samples 

measured by the device were sent and stored 

periodically to the server storage via wireless 

sensor network [1]. Between the years 2014–

2016, the pyranometer device had gathered 

approximately 4.5 million samples of data 

comprised the measured solar irradiance in 

W/m2 (Watts per square meter) every 10 

seconds i.e. around 8640 samples per day. The 

typical amount of solar irradiance for a clear 

sunny day in Vaasa (latitude 63.102⁰) should 

follow a bell-shaped curve whose peak is 

around noon time when the sun is at its zenith 

angle (perpendicular on the surface). The 

equations that govern calculating solar 

irradiance are: 

𝐼𝑠 = 𝐼𝑐 × (sin 𝜙 cos 𝛿 + cos 𝜙 cos 𝛿 cos 𝐻) (1) 

𝛿 = 23.45° × sin (360 × (284 − 𝑑)) (2) 

365 

𝐻 = 15° × (𝑇 − 12) (3) 

where, 

𝐼𝑐 global irradiance constant (1000-1376) 

W/m2 

𝜙 latitude angle from which 𝐼𝑠 is measured 

𝛿 declination angle in degrees 

𝐻 hourly angle per day time 

𝑇 time of the day in 24-hour format 

𝑑 number of days elapsed since 01/01/20xx 

Solar irradiance is -naturally- a fluctuating 

physical quantity associated with a high degree 

of uncertainty also is directly affected by 

numerous factors and parameters, such as: 

weather conditions, time of the year, time of the 

day, sensor bias, and geographical location. 

Hence, predicting the amount of incident solar 

irradiance on a given geographical location 

Elsanhoury et al.55
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requires parametric estimation, that is based on 

both deterministic and uncertain factors. 

2. MATERIALS AND METHODS

As mentioned, solar irradiance values are 

hindered by numerous factors which make it a 

challenging task to obtain an estimation for the 

incident solar insulation. Moreover, the datasets 

are being affected by the conditions of the 

surroundings where the physical sensors were 

installed, especially the underground sensors. 

The datasets suffered from discontinuities, 

sensor biases, and energy surges when heavy 

movable objects pass on the ground above the 

sensor compartment. Also, the measurements 

coming from the pyranometer device are 

affected by the weather conditions, birds and 

wind blowing. Consequently, the data was 

manually pre-processed case-by-case to remove 

the effects of non-parametric causes. Then, the 

prediction method proceeds with using the 

state-space estimation concept and Kalman 

filter algorithms that recognizes only the 

weather conditions. Later, we intend to develop 

a more complicated dynamic model to account 

for other contributing factors. 

A. State space estimation

The simplest linear model of state space

estimation can be expressed by the following

equations:

B. Kalman filters

The Kalman filtering algorithm is an iterative

recursive estimation method to predict the new

optimal states in linear state space systems 

considering additive white Gaussian noise. The 

algorithm is based on utilizing the prior 

knowledge to estimate the posterior state, then 

calculate the Kalman gain and the 

measurements residuals caused by the 

mismatch error, and finally predict the new state 

and covariance vectors to be used as an input to 

the next iteration [3-6]. 

Basically, the 𝑄𝑘 matrix (process noise 

covariance matrix) should be discretized using 

matrix fraction decomposition or the following 

analytical formula: [6] 

2.1 non-linear state space estimation 

The nature of most dynamic systems in reality 

is not linear hence; the linear Kalman Filter 

cannot be employed to estimate the states of 

these systems. In case of linear Kalman filter, 

both system dynamics and measurement 

process can yield nonlinear output or at least 

one of them. An extension to Kalman filter is 

required to deal with such nonlinearity. The 

solution is the Extended Kalman filter (EKF) 

for nonlinear state space estimation, which is 

based on Taylor series approximation of the 

joint distribution to linearize these systems. In 

case of severe nonlinear systems, the unscented 

Kalman filter (UKF) which is based on 

unscented transformation, is proven to be 

performing far better than EKF. Other nonlinear 

state space estimation extensions are developed 

such as Gauss-Hermite Kalman filter (GHKF) 

and the third-order symmetric Cubature Kalman 

filter (CKF). [6-7]  

A. Extended Kalman Filter (EKF)

All Kalman filters have two steps: the 

prediction step, where the next state of the 

system is predicted given the previous 
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measurements, and the update step, where the 

current state of the system is estimated given the 

measurement at that time step. Based on Taylor 

series approximation, EKF tends to linearize the 

joint distributions from nonlinear to linear by 

means of tangential point at each state 

estimation. Gaussian distribution is assumed all 

the time in EKF, as follows [6]: 

𝑥 ~ (𝑚, 𝑃) (6) 

function of measurements. To solve the 

distribution of y based on x, g should be 

Gaussian as well. In this case, g is a nonlinear 

non-Gaussian function so it must be 

approximated first. The joint distribution of x 

and y can be constructed by linear quadratic 

approximations such as deducing the Jacobian 

matrix of g for each state as follows: [6] 

The extended Kalman filter (EKF) extends the 

scope of the ordinary Kalman filter to nonlinear 

optimal state estimation problems by forming 

Gaussian approximation to the joint distribution 

of the state predictions and measurements using 

means of Jacobian matrix and Taylor series 

approximation up to first and second orders, as 

follows: 

B. First Order Extended Kalman Filter

Similar to the ordinary Kalman filter, EKF

algorithm consists of two major steps as

follows: [8-9]

• Prediction step

Where x is a normal distribution with m as the 

distribution mean, P as the covariance, and g(.) 

is a general nonlinear 

C. Limitations of EKF

EKF has few disadvantages which somewhat 

limit its operation as described in [10], that led 

to the development of the Unscented Kalman 

Filtering (UKF) to mitigate these limitations. 

EKF drawbacks can be summarized as follows: 

• EKF performs poorly in severe nonlinear

models dueto the significant 

approximation. 

• Jacobian and Hessian matrices first need to

exist inorder to perform the 

transformation. 

• Jacobian and Hessian matrices can be very

difficult toevaluate in many cases. 

• Second-order Kalman Filters require extra

computations, which reflects on resources.

An effective way to insert remedies to the EKF

output is to complement it with Kalman 

smoothers [6]. 

D. Discrete-time Kalman Smoother (RTS)

The Rauch-Tung-Striebel (RTS) smoother was 

developed by the authors of [9, 11, 12]. RTS can 

be used for computing the smoothing solution 

for the state space model given as a distribution. 

The basic idea here is to use the whole 

distribution over the whole period T, as 

follows: 
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The difference between Kalman filter and 

Kalman smoother is the recursive movement of 

the filter forwards starting from the first-time 

step k-1 while the smoother moves backwards 

starting from the last time step T. 

E. Extended RTS Kalman Smoother (ERTS)

Similarly, the difference between First-Order 

EKF smoother and KF smoother is the same as 

the difference between EKF and KF: the 

matrices 𝐴𝑘 and 𝐻𝑘 in Kalman smoother are 

replaced by the Jacobian (𝑚, 𝑘 - 1) and 𝐻𝑥 (𝑚, 

𝑘) in EKF smoother. Equations of ERTSK 

smoother become: 

 2.2 Building the Solar Irradiance Prediction 

Model 

The location of Vaasa, Finland and the hourly 

times of the day have been translated into the 

following parameters: latitude (ϕ) angle, 

declination (δ) angle, and hour (H) angle. 

A. Modelling the Extended Kalman filtering to

estimate solar irradiance

As can be concluded from equations of section 

II, the variables that affect solar irradiance for 

a fixed location can be reduced to; declination 

angle (𝛿) and time of day (H), provided that the 

latitude angle ( 𝜙 ) is kept constant. Therefore, 

the state vector can become x𝑘 = [𝛿𝑘 𝐻𝑘] T 

Assuming there are sensor measurements taken 

every second for both states, then 𝑦𝑘 = [𝛿𝐻] 

Vaasa University coordinates are 

21°35'40.1"E, then latitude angle (𝜙) = 

63.10322⁰ It is clear that calculating solar 

irradiance is a nonlinear state space estimation 

hence, the extended Kalman filter (EKF) 

method will be used in this example. 

B. Jacobian matrices

EKF uses Jacobian matrices to perform the 

Gaussian approximation. Assuming that the 

dynamic function is the same as the 

measurement function, then the Jacobians in 

this example become as follows: 

C. Initial state vector x_init

Starting from initial position (𝑡 = 0) at 00:00, 

day number is 70 i.e. 11th March 2015, 

therefore the initial condition vector becomes: 

𝑥𝑖𝑛𝑖𝑡 = [𝛿0  0 ]𝑇 = [−12.10⁰  −179.99⁰]𝑇  (31) 

The full MATLAB code for solar irradiance 

estimation using Extended Kalman filter and 

ERTS smoother can be found in Appendix I. 

The results of estimating solar irradiance using 

Jacobian matrices for a single day are found in 

Figure 3 
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(A) 

(B) 

Fig3. A) EKF estimations of solar irradiance in 

Vaasa for the 11th of March 2015. B) A zoomed 

version of the “A” plot. The blue curve refers to 

ideal values, red dots refer to measurements, and 

the yellow curve refers to the filtered values. The 

results of estimating solar irradiance using 

Jacobian matrices for n consecutive days starting 

from the 11th of March 2015 are illustrated in 

Figure 4 

[

(A) 

(B) 
Fig 4: Solar irradiance estimation for several 

days in March 2015. A) when n = 3 consecutive 

days, and B) when n = 5 consecutive days. 

The mean square error of EKF estimations 

was: 

• EKF-MSE = 0.0621 watt/m^2

B. Applying the Extended Kalman

smoother (ERTS) algorithm

The ERTS algorithm was used to fine-tune 

the results of EKF estimates as shown in 5. 

Fig 5. The results of ERTS smoother for 

solar irradiance predictions (11th March 

2015). 

The Mean Square Error (MSE) of all solar 

irradiance estimation methods were as follows: 

Using EKF: EKF-MSE = 0.0623 watt/m^2 

Using ERTS: ERTS-MSE = 0.0614 watt/m^2 

Judging by the given results and plots, clearly 

the ERTS smoother outperform the original 

EKF estimations even if with small 

improvements in the mean square error. 

I. CONCLUSIONS

Renewable energy sources are very crucial for 

daily life activities especially in remote 

countries that suffer from solar heat and light 

deficiencies. As a Nordic country, Finland 

struggles with providing the necessary energy 

sources throughout the dark cold winter which 

prevail for more than six months every year. 

Energy storage could be a key element for 

Finland to harvest solar light and heat (warmth) 

during the long sunny days of summer, which 

can be used for the small energy burden of 

summer, and store the excessive for later use. In 

this article, we experimented the harvesting of 

incident solar irradiance on the city of Vaasa 
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(Finland) using physical heat sensors buried 

beneath the earth's surface and a pyranometer 

device mounted on a building's rooftop. We 

proposed a simple state-space estimation 

technique using extended Kalman filter (EKF) 

and smoother (ERTS) to predict the incident 

solar irradiation on Vaasa. The results showed 

an unmatched performance for the given 

algorithm which yield an acceptable estimation 

accuracy for the proposed model. For future 

work, we plan to develop more advanced 

dynamic model that resembles the solar 

irradiance on Finland by considering other 

contributing factors including the 

extraterrestrial values and atmospheric 

absorption effects. 
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