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ABSTRACT

Traditional signature-based malware detection techniques have become inadequate in addressing the
complexity of modern cybersecurity threats. To overcome these limitations, this paper presents an
intelligent malware classification framework that leverages computer vision and deep learning. The
Malimg dataset, consisting of grayscale images representing diverse malware families, was utilized to
facilitate structural and behavioural feature extraction. The hybrid MobileNetV3—LightGBM model
proposed in this paper combines the lightweight MobileNetV3 architecture for efficient deep feature
representation with the Light Gradient Boosting Machine (LightGBM) for robust and accurate
classification. Experimental results demonstrate that the proposed model outperforms conventional deep
learning approaches such as CNN and CNN-SVM, achieving an accuracy of 97.6%, with precision,
recall, and F1-score averaging 98%. These findings confirm that integrating lightweight convolutional
networks with gradient-boosted decision techniques significantly enhances malware detection
performance and generalization. The proposed framework provides a scalable and effective solution for
real-time malware analysis and establishes a foundation for future research on adaptive and explainable
Al-driven cybersecurity systems.
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